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EXECUTIVE SUMMARY

1. GENERAL STRATEGY

The overall program embraces property profiles, manufacturing, design

and sensor development (Fig. 1) consistent with a concurrent engineering

philosophy. For this purpose. the program has created networks with the

other composites activities. Manufacturing research on MMCs is strongly

coupled with the 3M Model Factory and with the DARPA consolidation team.

Major links with Corning and SEP are being established for CMC

manufacturing. Design Team activities are coordinated by exchange visits, in

February/March, to Pratt and Whitney, General Electric, McDonnell

Douglas and Coming. Other visits and exchanges are being discussed.

These visits serve both as a critique of the research plan and as a means of

disseminating the knowledge acquired in 1992.

The program strategy concerned with design attempts to provide a

balance of effort between properties and design by having studies of

mechanisms and property profiles. which intersect with a focused activity

devoted to design problems (Fig. 2). The latter includes two foci, one on

MMCs and one on CMCs. Each focus reflects differences in the property

emphases required for design. The intersections with the mechanism

studies ensure that commonalties in behavior continue to be identified, and

also facilitate the efficient transfer of models between MMCs and CMCs.
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2. PROPERTY PROFILES

Each research activity concerned with properties begins with

experiments that identify the principal property-controlling phenomena.

Models are then developed that relate the physical response to constituent

properties. These models, when validated, provide the -onstitutive laws

required for calculating stress redistribution, failure and damage

progression. They also provide a solid physics and mechanics

understanding, which can be used to judge the effectiveness of the

simplified procedures needed for design purposes.

2.1 Fatigue

Studies of the propagation of dominant mode I fatigue cracks from

notches in MMCs, including the role of fiber bridging and fiber failure, have

been comprehensively addressed (Zok, McMeekingj. Software programs that

include these effects have been developed. These are being transferred to

Pratt and Whitney and KAMAN Sciences. The effects of thermal cycling on

crack growth in MMCs have also been modelled (McMeeking). The results

highlight the opposing effects of cycling on matrix crack growth and fiber

failure (the fatigue threshold), when thermal cycles are superposed onto load

cycles. Notably, matrix crack growth is enhanced by out-of-phase

thermomechanical cycling, but fiber failure is suppressed (and vice versa for

in-phase cycling). Experimental studies that examine these predictions are

planned (Zok).

Studies have also been conducted on systems that exhibit multiple

matrix cracking (Zok). The tensile stress-strain behavior of composites

containing such cracks is analogous to the behavior of unidirectional CMCs
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under monotonic tensile loading. As a result, models developed to describe

the tensile response of the CMCs have found utility in describing the MMCs.

However, two important differences in the two classes of composite have

been identified and are presently being addressed. The first deals with the

nature of the crack patterns. In the CMCs, the cracks are more or less

uniformly spaced and generally span across the entire composite section. In

contrast, the MMCs exhibit a broader distribution of crack sizes, many of

which are short compared with the specimen dimensions. Methodologies for

measurement and interpretation of crack densities in MMCs are being

developed. The second problem deals with degradation in the interfacial

sliding properties with cyclic sliding in the MMCs. Such degradation is

presently being studied using fiber push-out tests in fatigued specimens.

Thermal fatigue studies on MMCs subject to transverse loading have

been performed and have established the conditions that allow shakedown

(Leckie). The shakedown range is found to be strongly influenced by the

extent of matrix creep. which defines a temperature limitation on the use of

the material. The eventual outcome of this activity would be the

specification of parameters that ensure shakedown and avoid ratcheting.

The next challenge for MMCs concern the quantification of transitions

in fatigue behavior, especially those found at higher temperatures. These

include multiple matrix cracking and shear band formation. Experimental

studies are in progress which will be used to establish a mechanism map.

The map, when developed, would explicitly identify the transitions (7ok). The

analogous behavior found in CMCs will facilitate this development. Other

high temperature phenomena to be explored include changes in the

interfacial sliding behavior due to both relaxations in the thermal residual

stresses and the growth of reaction products near the fiber-matrix interface.
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Fatigue damage studies on 2-1) CMCs will focus on interface and fiber

degradation phenomena. especially at elevated temperatures (Evans. Zok).

Cyclic loading into the stress range at which matrix cracks exist is known to

modify the interface sliding stress and may weaken the fibers. These

degradation effects can be distinguished, because they change the

hysteresis loop and reduce the UTS. respectively. Experiments that probe

these material responses are planned. In addition, models that include the

influence of cyclic fiber failure and pull-out on fatigue damage will be

developed (Suo).

2.2 Matrix Cracking

Models of the plastic strain and modulus changes caused by various

modes of matrix cracking have been developed. These solutions have

provided a rationale for experimental studies on the tensile and shear

behavior of CMCs and on the fatigue of MMCs (Hutchinson. Zok. Evans.

Suo, Budiansky. McMeeking). The information has been used in two distinct

ways. (i) Test methodologies have been devised that relate

stress/displacement measurements to constituent properties (Table 1).

(ii) Stress/strain curves and matrix crack evolution have been simulated for

specific combinations of constituent properties.

The devc.opment of the procedures and their implementation are still in

progress. Independent solutions have been established for matrix cracks in

00 plies and 900 plies upon tensile loading. The former has been

experimentally validated on 1-D materials (SiC/SiC and SiC/CAS).

Measurements of plastic strain, hysteresis loops and crack densities have

been checked against the models for consistency.
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TABLE I

Relevant Constituent Properties and Measurement Methods

CON STITUENT PROPERTY MEASUREMENT

• Pull-Out Length, h

* Saturation Crack Spacing. Is
Sliding Stress, T

* Hysteresis Loop. 5 E 1/2

* Unloading Modulus. EL

* Fracture Mirrors
Characteristic Strength, Se, m

a Ultimate Strength. S

0 Bilayer Distortion

Misfit Strain. K (q) * Permanent Strain, Ep

* Residual Crack Opening

* Monolithic Material

Matrix Fracture Energy, rm • Saturation Crack Spacing. is

* Matrix Cracking Stress. rnc

* Permanent Strain, Cp
Debond Energy. r1

9 Residual Crack Opening
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The next challenge is to couple the models together in order to simulate

the evolution of matrix cracks in 2-D materials, subject to tensile loading

(Hutchinson, Budiansky). Related effects on the ultimate tensile strength

caused by stress concentrations in the fibers in the presence of matrix

cracks. would also be evaluated. Experimental measurements of

stress/strain behavior in 2-D CMCs, with concurrent observations of matrix

crack evolution, would be used to guide and validate such models (Evans,

Kedward).

2.3 Constitutive Equations

Constitutive equations provide the link between material behavior at

the meso-scale and the performance of engineering components. The

equations can be established from the results of uniaxial and transverse

tensile tests together with in-plane shear loading. For a complete

formulation, which describes accurately the growth of failure mechanisms

and the conditions of failure at the meso-scale, it is also necessary to

perform calculations which are valid at the micro-scale.

These procedures have been completed for metal-matrix composites

(Jansson. Leckie), and the resulting constitutive equations are operational

in the ABAQUS finite element code. The behavior of simple panels

penetrated by circular holes have been studied and the results await

comparison with experiments which are planned for the coming year. The

constitutive equations art formulated in terms of state variables which

include the hardening tensors and damage state variables which describe

debonding at the interface and void growth in the matrix. The format is

sufficiently general to allow the inclusion of failure mechanisms such as

environmental attack as the appropriate understanding is available. For
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example, the effect of matrix and fiber creep mechanisms (Aravas) have also

been introduced into ABAQUS, and it is proposed to extend the creep

conditions to include the effects of variable loading and temperature.

A similar approach has been taken towards the modulus of CMCs. In

this case, efforts have been made to include the influence of matrix

cracking, in-plane shearing and fiber breakage. The latter consideration is

based on the global load sharing model (Hayhurst). The equations are also

available in ABAQUS. At present, matrix cracking is Introduced by

assuming a matrix stress accompanied by an increase of strain. However.

based on the more recent understanding of the growth of matrix cracks

(above) it is intended to introduce these mechanisms into the constitutive

equations for CMCs.

2.4 Creep

The emphases of the creep investigations have been on the anisotropic

characteristics of unidirectional layers in which the fibers are elastic, but

the matrix creeps. Experiments and models of the longitudinal creep

properties of such materials have been initiated (McMeeking, Leckie, Evans.

Zok. Aravas). The critical issues in this orientation concern the incidence of

fiber failure and the subsequent sliding response of the Interface. A

modelling effort has established an approach that allows the stochastic

evolution of fiber failure to occur as stress is transferred onto the fibers by

matrix creep (McMeeking). This approach leads to creep rates with a large

power law exponent. Various attempts are underway to incorporate the

interface sliding initiated by fiber breaks and to introduce sliding into the

creep rate formulation. Experiments being performed on unidirectional Ti

matrix materials are examining the incidence of fiber failures on the creep
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deformation (Evans. Leckie, Zok). These results will guide the modelling

effort concerned with interface sliding effects. Insight will also be gained

about fiber failure stochastics during creep, especially differences from room

temperature behavior.

The transverse creep properties are expected to have direct analogies

with composite deformation for a power law hardening matrix (Section 2 3).

In particular, the same effects of debonding and matrix damages arise and

can be incorporated in an equivalent manner (Leckie, Aravas). Testing is

being performed on Ti MMCs and on SiC/CAS to validate the models.

Experiments on Ti-matrix 0*/90' cross-ply composites are planned.

Creep models appropriate to cross-ply materials will be developed by

combining those corresponding to the unidirectional materials in the

longitudinal and transverse orientations, using a rule-of-mixtures approach.

Such an approach is expected to be adequate for loadings in which the

principal stresses coincide with the fiber axes. Alternate approaches will be

sought to describe the material response in other orientations.

Some CMCs contain fibers that creep more extensively than the matrix.

This creep deformation has been found to elevate the stress in the matrix

and cause time dependent evolution of matrix cracks. This coupled process

results in continuous creep deformation with relatively low creep ductility.

Experiments on such materials are continuing (Evans, Leckie) and a

modelling effort will be initiated (Suo). The models would include load

transfer into the matrix by creeping fibers, with sliding interfaces, leading to

enhanced matrix cracking.
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2.5 Tensile Strength

The ultimate strength (UTS) of both CMCs and MMCs (as well as fatigue

and creep thresholds) is dominated by fiber failure. With the global load

sharing (GLS) concept of fiber failure now well established, the recent

emphasis has been on defining the constituent properties needed to ensure

GLS. The approach has been to perform local load sharing calculations and

then compare experimental UTS data with the GLS predictions (Cur-tin.

Evans, Leckie). The situation is unresolved. However, initial calculations on

CMCs (Curtin) and MMCs (Evans) have provided some insight. Two key

remaining issues concern the magnitude of the stress concentration in

intact fibers caused by matrix cracks and the role of fiber pull-out in

alleviating those stresses. Calculations of these effects are planned

(Budiansky, Suo).

Degradation of the fiber strength upon either high temperature (creep)

testing. atmospheric exposure, or fatigue are other topics of interest.

Rupture testing performed under these conditions will be assessed in terms

of degradation in fiber properties.

3. DESIGN TEAMS

3.1 The Approach

The overall philosophy of the design effort is to eventually combine

material models, with a materials selector, and a data base. within a unified

software package (Prinz). One example of a composites data base is that

developed for MMCs by KAMAN Sciences, which forms the basis for a

potential collaboration. The materials selector has already been developed
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for monolithic materials (Ashby) and is available for purchase. This selector

requires expansion to incorporate phenomena that have special significance

for high temperature composites, including creep and thermal fatigue. These

new features will be developed and included in the advanced selector

software (Ashby).

The modelling approach is illustrated in Table II. Failure mechanisms

and their effect on material behavior have been introduced into constitutive

equations. The stress, strain and damage fields which develop in

components during the cycles of loading and temperature can then be

computed. Experiments shall be performed on simple components such as

holes in plates, and comparison made with the computational predictions.

Since constitutive equations are modeled using the results of coupon tests,

it is likely that additional failure modes shall come to light during

component testing. These mechanisms shall be studied and the appropriate

mechanics developed so that their influence is correctly factored into the

constitutive equations. In this way, increased confidence in the reliability of

the constitutive equations can be established in a systematic way.

In practice, it is most probable that the constitutive equations are too

complex for application at the creative level of the design process. It is then

that simple but reliable procedures are of greater use. Some success has

been achieved in this regard for MMCs subjected to cyclic mechanical and

thermal loading (Jansson, Ponter, Leckie). as well as for strength

calculations of CMC panels penetrated by holes (Suo) and the fatigue of

MMCs (Zok, McMeeking). In all cases simplifications are introduced after a

complete and reliable analysis has been completed which provides a

standard against which the effects of simplification can be assessed.
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3.2 Ceramic Matrix Composite Design

The design effort on CMCs will have its major focus on pin-loaded holes

used for attachments (Fig. 3). A smaller activity, expected to expand in

1994, will address delamination cracking. The hole design includes several

related topics. Each topic is concerned with aspects of constitutive law

development (Table Ill). highlighted during the study group. Combined

experimental and modelling efforts on the tensile properties of CMCs have

established that the plastic strains are dominated by matrix cracks in the 0'

plies. The matrix cracking models developed in the program demonstrate

that these strains are governed by four independent constituent properties

[(Table I) t, Fi, Q and lFm1 which combine and interrelate through five non-

dimensional parameters (Table IV). This modelling background suggests a

concept for using model-based knowledge to develop constitutive laws. The

following steps are involved (Table Ill). (1) A model-based methodology for

Inferring the constituent properties of unidirectional CMCs from

macroscopic stress/strain behavior has been devised and is being

experimentally tested on a range of materials (Evans). (U) Upon validation.

the models would allow stress/strain curves to be simulated (Hutchinson).

This capability would facilitate a sensitivity study to be performed, in order

to determine the minimum number of independent parameters that

adequately represent the constitutive law. A strictly empirical law would

require 3 parameters (yield strength, hardening rate and unloading

modulus). Consequently, the objective might be to seek 3 combinations of

the 4 constituent properties. (iii) Experiments would be performed and

models developed that establish the matrix cracking sequence in 2-D

materials (Hutchinson, Evans. Kedward). These would be conducted on

14
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TABLE WV

Summary of Non-Dimensional Coefficients

-@o = [f/(1-f)]2 (EfEL/E~m)(ao r/RSu), Flaw Index for Bridging

Ap = (aO /h)(Sp /EL), Flaw Index for Pull-Out

D = m (1-f)2 E Em/ If 2 EL R, Crack Spacing Index

H = b2 (1-alf)2 RU /4d Em f2, Hysteresis Index

= Up/Em f, Misfit Index

= 6tFm f2 Ef/(1-f)E2 REL, Matrix Cracking Index

Q = Ep fQ/ EL (1- v), Residual Stress Index

Ai = (1/C,0) rFji/EmR, Debond index
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CMCs with a range of different constituent properties and fiber

architectures. The plastic strains would be related to constituent properties

by adapting the 1 -D niodels,

The in-plane shear behavior will be characterized by performing

experiments and developing models of matrix cracking that govern the

plastic shear strain in 2-D CMC (Evans, Hutchinson, Bao). The information

will be used to establish the constitutive laws for in-plane shear, as well as

interlaminar shear. For continuity of interpolation between tension and

shear, the shear models will include the same constituent properties as

those used to represent the tensile behavior.

The model-based constitutive laws, based on matrix damage, will be

built into a CDM (continuum damage mechanics) formulation, compatible

with finite element codes (Hayhurst). Computations will be performed to

explore stress redistribution around holes and other strain concentration

sites. The calculations will establish visualizations of stress evolution that

can be compared with experimental measurements performed using the

SPATE method, as well as by Moird interferometry (Mackin, Evans). These

experiments will be on specimens with notches and holes, loaded in tension.

The comparisons between the measured and calculated stress patterns will

represent the ultimate validation of the constitutive law. The composite

codes, when validated. will be made available to industry.

Some preliminary experimental work will be performed on pin-loaded

holes. Damage patterns will be monitored and stress redistribution effects

assessed using SPATE (Kedward, Evans, Mackin). These experiments will be

conducted on SiC/CAS and SiC/C. The results will provide the focus for

future CDM computations, based on the constitutive law for the material.

18



Smaller scale activities will involve basic aspects of stress redistribution

around holes caused by fatigue and creep damage, using the experience

gained from the matrix cracking studies. Some experimental measurements

of these effects will be performed using SPATE (Zok, Evans).

Some delamination crack growth measurements and calculations are

also envisaged (Ashby, Kedward, Hutchinson). Cantilever beam and

C-specimens will be used for this purpose (Fig. 4). During such tests, crack

growth, multiple cracking and stiffness changes will be addressed. Models of

bridging by inclined fibers will be developed (Ashby) and used for

interpretation.

3.3 Metal Matrix Composite Design

The 3D constitutive equations for MMCs are now available for use in

the ABAQUS finite element code, and the immediate task is to use these

equations to predict the behavior of representative components (Leckie). One

such system is a ring-type structure which is being studied together with

Pratt and Whitney. Clearly no experimental verification is possible with a

component of this scale, but the experience of Pratt and Whitney shall

provide invaluable input on the effectiveness of the calculations. A

component sufficiently simple to be tested is the panel penetrated by holes.

The holes shall be both unloaded and loaded (Jansson), and it is expected to

include the effects of cyclic mechanical and thermal loading.

It is proposed to develop simplified procedures which are based on

shakedown procedures (Jansson, Leckie). Demonstrations have already

been made of the effectiveness of the Gohfeld method (which uses only

simple calculations) in representing the behavior of MMCs subjected to

cyclic thermal loading.
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During the complex histories of stress and temperature, it is knowm

that the matrix-fiber interface properties change. Fatigue loading (Zok) is

know to decrease the interface sliding stress. Transverse creep appears to

cause matrix-fiber debonding (Jansson), which might result in loss of the

ability to transfer stress between matrix and fiber. It is intended to study

this effect of transverse creep on the integrity of the longitudinal strength of

the material by performing tests on panels which shall allow rotation of the

stress fields. A good understanding now exists of the fatigue properties of

MMCs (Zok). It is intended to extend the ideas developed from earlier

theoretical studies (McMeeking. Evans) to include cyclic thermal effects and

experimental programs on holes in plates.

4. MANUFACTURING

The activities in processing and manufacturing have had the following

foci:

"* Matrix development to address specific requirements identified by the

design problems, particularly first matrix cracking in CMCs (Lange)

and creep strengthening in MMC/IMCs (Levi, Lucas).

" Hybrid architectures which offer possible solutions to environmental

degradation and thermal shock problems (Evans, Lange. Leckie, Levi,
Yang, Zok).

"* Software development that predicts and controls fiber damage and

interface properties during densification (Wadley).

"• Processing techniques to generate model MMC sub-elements (Leckie,

Levi, Yang).
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4.1 Metal Matrix Composites

Work on MMC matrix development has focused on dispersion

strengthening approaches to increase the transverse tensile and creep

strength of 1 -D and 2-D fiber architectures. The initial work has emphasized

a model system, Cu/A12 0 3 , wherein dispersoids are produced by internal

oxidation of a dilute Cu-AI alloy deposited by PVD onto sapphire fibers.

These are subsequently consolidated by HIP'ing. Specimens with fiber

volume fractions of 0.3 5 f < 0.5 and 2-3% y-A12 0 3 dispersoids (- 20 nm in

size) have been produced in this manner and will be tested to assess their

transverse creep behavior. The new emphasis will be on higher temperature

matrices based on TiB dispersoids in Ti-(Cr/Mo)-B alloys (Levi). Initial

solidification studies have demonstrated the potential of these materials as

in-situ composites. Efforts are underway to develop sputtering capabilities to

implement this concept.

Fiber damage during densification of composite prepregs generated by

plasma-spray (GE) and PVD (3M) have also been emphasized (Wadley).

Intc.rdiffusion studies coupled with push-out tests have been used to study

the evolution of reaction layers in Ti/SiC composites and their effect on the

relevant interfacial properties as a function of process parai.,eters.

Additional efforts under other programs have fccused on developing

predictive models for fiber breakage during densification. The interdiffusion

and breakage models are being incorporated into software that predicts

pressure-temperature paths, which simultaneously minimize fiber damage

and control the interface properties.

The feasibility of producing MMC sub-elements consisting of fiber

reinforced rings (1-D) and tubes (2-D) has been demonstrated by using
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liquid metal infiltration of Al alloy matrices (Levi). These are presently

undergoing testing in combined tension/torsion modes. Future efforts will

be directed toward extending the technique to other shapes (e.g.. plates with

reinforced holes), as well as devising methods to modify the (currently

strong) interfaces. The identification of methods that provide the appropriate

interfacial debonding/sliding characteristics should enable the use of these

composites as model systems for higher temperature MMCs, such as Ti.

4.2 Intermetallic Matrix Composites

The focus of the IMC processing activities has been on the synthesis of

MoSi2 /P-SiCp composites by solidification processing. These materials are of

interest as potentia. -natrices for fiber composites. Significant progress was

made in the elucidation of the relevant Mo-SI-C phase equilibria, the growth

mechanisms of SiC from the melt and their impact on reinforcement

morphology, as well as the orientation relationships between matrix and

reinforcements, and the interfacial structure. An amorphous C layer, <5 nm

thick, was found at the MoSi 2 /SiC interface In the as cast condition, and

persisted after 12 h heat treatments at 15001C. This interfacial layer has

been reproduced in a-SiCp/(MoSi 2 + C) composites produced by powder

metallurgy techniques and was found to exhibit promising debonding and

pull-out behavior during fracture (Levi). Future efforts are aimed at

implementing this in-situ coating concept in a-SiC fiber composites.

4.3 Ceramic Matrix Composites

The processing issues for creating CMCs with high matrix strength

continue to be explored (Lange, Evans). The basic concept is to create a

strong ceramic matrix framework within a fiber preform, by means of slurry
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infiltration followed by heat treatment. This strong framework would then be

infiltrated by a polymer precursor and pyrolyzed to further densify the

matrix. It has been demonstrated that strong matrices of Si 3 N 4 can be

produced using this approach (Lange). Further work will address

relationships between matrix strength and microstructure (Lange, Evans).

4.4 Hybrids

These activities cover materials consisting of thin monolithic ceramic

layers alternatiT ith layers containing high strength fibers bonded by a

glass or metallic binder. The primary motivation behind this concept is the

potential for manufacturing shapes that have a high resistance to

environmental degradation and also have good thermal shock resistance.

The concept has been demonstrated using alumina plates and graphite

reinforced polymer prepregs (Lange). The availability of glass-ceramic

bonded SiCf prepregs and tape-cast SiC plates has facilitated the extension

of this technique to high temperature systems (Lange). Future assessment

will address new crack control concepts. These concepts would prevent

damage from propagating into the fiber reinforced layers, especially upon

thermal loading (Zok, Lange). If successful, this concept would allow the

development of hybrid CMCs which impart resistance to environmental

degradation, as well as high thermal strain tolerance.

Preliminary work has been performed on laminates consisting of

alumina plates and sapphire-fiber reinforced Cu monotapes (Levi). The latter

are produced by deposition of Cu on individual fibers which are

subsequently aligned and bonded by hot pressing between two Cu foils.

After suitable surface preparation, the alumina/monotape assemblies are
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bonded by hot pressing. Future work is aimed at implementing the concept

with Ni based alloys.

5. SENSORS

The principal challenge being addressed is the non-destructive and

non-evasive measurement of stresses in composites (Clarke. Wadley). The

motivation is to make detailed measurements of stresses in components for

incorporation into evolving design models, as well as validation of the stress

distributions computed by finite element methods. A major emphasis has

been placed on measuring the residual stresses in sapphire fibers in various

matrices, using the recently developed technique of optical fluorescence

spectroscopy. These measurements have provided data on the distribution

of residual thermal stresses in the fiber reinforcement, as a function of

depth below the surface. This approach will be extended, in conjunction

with finite element modelling (Hutchinson), to measure the stresses during

the process of fiber pull-out from a variety of metal and ceramic matrices.

Initial experiments indicate that such in-situ measurements are feasible.

The technique will also be applied to the measurement of the stresses

in sapphire fibers located in the vicinity of pin-loaded holes in order to

understand the manner in which the stresses redistribute during loading. It

is anticipated that this measurement will provide information about the

detailed fiber loadings and also about the stresses that cause debonding of

the fibers from the matrix. Moreover, in support of the activities on thermal

ratcheting, the redistribution of stresses with thermal cycling will be

established. This will be accomplished by using the fluorescence technique

as well as Moir6 interferometry, based on lithographically defined features.
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ABSTRACT

The mode I fatigue crack growth behavior of a fiber reinforced metal matrix

composite with weak interfaces is examined. In the longitudinal orientation, matrix

cracks initially grow with minimal fiber failure. The tractions exerted by the intact

fibers shield the crack tip from the applied stress and reduce the rate of crack growth

relative to that in the unreinforced matrix alloy. in some instances, further growth is

accompanied by fiber failure and a concomitant loss in crack tip shielding. The

measurements are compared with model predictions, incorporating the intrinsic fatigue

properties of the matrix and the shielding contributions derived from the intact fibers.

The magnitude of the interface sliding stress inferred from the comparisons between

experiment and theory is found to be in broad agreement with values measured using

alternate techniques. The results also indicate that the interface sliding stress degrades

with cyclic sliding, an effect yet to be incorporated in the model. In contrast, the

transverse fatigue properties are found to be inferior to those of the monolithic matrix

alloy, a consequence of the poor fatigue resistance of the fiber/matrix interface.
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1. INTRODUCTION

Fiber reinforced metal matrix composites exhibit a variety of damage modes

under cyclic loading conditions 1 "5. In the presence of holes or notches, the damage may

involve the propagation of a single mode I matrix crack perpendicular to the fibers,- 3 .

Provided the fiber/matrix interface is sufficiently weak, cracking initially occurs

without fiber failure. The tractions exerted on the crack face by the intact fibers shield

the crack tip from the remote stress and thus reduce the crack growth rate relative to

that of the matrix alone. Further growth may lead to fiber failure, both in the crack

wake and ahead of the crack tip, leading to an acceleration in crack growth.

Alternatively, the damage may be in the form of a process zone comprised of multiple

mode I cracks4 . The mechanics of this process again involves issues of crack bridging

and fiber failure, as well ,,s an understanding of the role of the interactions between

cracks. In yet other instances, failure occurs by splitting parallel to the fiber direction 4- 5 .

The splitting mode is enhanced by the application of bending moments, as exemplified

by tests conducted on compact tension specimens5.

A comprehensive understanding of the material parameters governing the

various damage modes and the role of the damage in fatigue lifetime is not yet

available. However, the recognition that the damage modes have close analogies in

fiber reinforced ceramic matrix composites (CMCs) under monotonic loading conditions

suggests that the existing mechanics (developed for CMCs) may have applicability to

MMCs, provided appropriate modifications are made to account for the cyclic nature of

the imposed stress. The present article examines one of these fatigue mechanisms

(mode I matrix cracking), and attempts to assess the utility of the mechanics

formulisms 6 -8 in describing fatigue crack growth. The study compares experimental

measurements with model predictions, incorporating the effects of fiber bridging. The

role of fiber failure in the fatigue cracking process is also examined.
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The paper is organized in the following way. First, a summary of the mechanics

of crack bridging by frictionally c )nstrained fibers under cyclic loading is presented

(Section 2). The mechanics identifies the important material properties and loading

parameters governing fatigue, and provides guidance for the design and interpretation

of the experiments. This is followed by a description of the materials and experimental

methods employed (Section 3), and a summary of the measurements and observations,

along with comparisons with model predictions (Sections 4 and 5).

2. MECHANICS OF CRACK BRIDGING

2.1 Shielding Effects

The mechanics of crack bridging by frictionally constrained fibers in brittle

matrix composites under monotonic tensile loading has been well established 9-1 1. A

fundamental assumption in the analysis is that the driving force for crack extension is

the crack tip stress intensity factor, Kt, as governed by the remote stress and the tractions

acting in the crack wake. Equating Kt with the composite fracture toughness (which

usually scales with the fracture toughness of the matrix itself), gives the stress required

for matrix cracking in terms of the component geometry and various constituent

properties.

These concepts have been extended to describe matrix cracking in fiber

reinforced metal matrix composites under cyclic loading conditions6-8 . By analogy with

the monotonic loading problem, the driving force for crack extension is taken to be the

crack tip stress intensity factor amplitude, AKt:

AKt = AKa + AKb (1)
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where AKa is the component due to the applied stress amplitude, ACa, and AKb is the

component due to the bridging tractions, AOb, exerted by intact fibers in the crack wake.

For an infinite center-cracked tensile panel, these components are given by12

AKa = Aa -F (2)

and

AKb = 2 fa Ao bW Sdx
J 0 ;J a -X 2  

(3)

where 2ao is the initial notch length, 2a is the current crack length and x is the distance

from the crack center.

To evaluate the distribution of bridging tractions, Aab (x), it is first necessary to

specify the contributions to the change in crack opening displacement Au due to the

applied stress AUa and that due to the bridging fibers Aub12:

Aua= 4 ACa a2 -x 2 (E (4)

and

Aub = 00) H(tx,a) dt (5)

where E is an effective composite modulus (taking account of material orthotropy) and

the Green's function H is 12
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H(t,x,a) = log 7a x72 +t;.(6)

The sum of these components,

Au = AUa + AUb (7)

is required to be consistent with the cyclic traction law (taking into account reverse slip

during unloading)6:

1 2Au = 2 Aab (8)2

Here X is a material parameter defined by*

.=D(1-f) 2 E2

4 E2 Ef r f2  (9)

where D is the fiber diameter, f is the fiber volume fractions, Em and Ef are the matrix

and fiber Young's moduli and E is the longitudinal composite modulus

(= f Ef + (1-f) En). Combining Eqns. 4-8 gives an integral equation of the form

2aE ,a 2 - - 4a Aab(t)H(txa)dt (10)

The parameter X differs from that used in Refs. 6 and 9 by a factor of EM(I-f)/E. This modification
provides consistency between the steady-state stress intensity factor and the value obtained from
energy-based approaches 1101. A more detailed discussion of the origin of such effects can be found in
[13).
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This equation is solved numerically for AOb using an iterative scheme, and the result

combined with Eqns. 1-3 to evaluate AKt.

The effects of finite specimen width, 2w, have also been studied through

calculations based on finite element methods7. For specimens with a normalized notch

size ao/w = 0.2 (a value comparable to those used in the present experiments) and crack

lengths in the range a/w :5 0.5, the effects of finite width on the crack tip stress intensity

amplitude can be approximated by the relation

AKt (a/w, ACT) -= Y (a/w) AKt (a/-o, AG) 011)

where AKt (a/w, Aca) and AKt (a/o-, AM) represent values for the finite and infinite

specimens, respectively, and

Y (a/w) = •/sec ,ta/2w (12)

(the usual finite width correction used in calculating the applied stress intensity1 2). The

error introduced by this approximation is less than -3%. As seen later, this range of

crack lengths is consistent with the majority of values measured experimentally, making

the approximate width correction (Eqns. 11 and 12) suitable for subsequent calculations.

2.2 Fatigue Crack Growth

By analogy to monolithic materials, it is expected that the rate of fatigue crack

growth in composites can be described in terms of AKt through an empirical relation of

the form

da/dN = • (AKt)n (13)
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where N is the number of loading cycles. The parameters P and n represent the

behavior of a matrix crack propagating through an array of elastic fibers and are thus

properties of the composite. However, in view of the lack of understanding of the effects

of the fibers on the processes occurring at the crack tip, it seems adequate to select

values of P and n that are representative of the monolithic matrix alloy. With this

approach, the effects of the fibers at the crack tip are neglected.

2.3 Fiber Failure

Once the fibers begin to fail, their contribution to crack tip shielding is reduced

substantially. To incorporate such effects in the model, a deterministic criterion for fiber

failure has been used7. The calculations are conducted by continuously adjusting the

unbridged portion of the crack to maintain a stress at the tip of the unbridged segment

equal to the fiber strength. Through this approach, the entire cracking history (a vs N)

can be simulated.

The results of these calculations can also be used to develop a criterion for a

"threshold" stress amplitude, A(th, below which fiber failure does not occur for any

crack length. Within such a regime, the crack growth rate approaches a steady-state

value, with all fibers in the crack wake remaining intact. The variation in the

"threshold" stress amplitude with fiber strength is plotted in Fig. 1. The maximum

value of Aath occurs when there is no notch, i.e. ao = 0, whereupon

Aathlf S (I - R) = 1 (14)
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where R is the ratio of the minimum to maximum applied stress. Increasing either the

notch length or interface sliding stress (or, equivalently, decreasing the fiber strength or

fiber diameter) has the effect of decreasing the quantity Acrth/(I - R) fS.

3. EXPERIMENTAL METHODS

3.1 Material

The material used in this study was a metastable 13-titanium alloy

(Ti-15V-3Cr-3A1-3Sn) reinforced with continuous, aligned SCS-6 (SiC) fibers. The fibers

are 140 pim in diameter and are coated with a 3 pam graded C/Si layer. The purpose of

the coating is to inhibit fiber/matrix interaction during consolidation. The composite

was fabricated through a foil-fiber-foil technique, wherein Ti-alloy foils and fiber mats

are alternately stacked and subsequently vacuum hot-pressed. During consolidation, a

brittle reaction product consisting primarily of TiC forms at the interface between the Ti

matrix and the C-rich fiber coating14 . Prior studies have shown this system to exhibit

the requisite properties for interface debonding and sliding to occur during matrix

cracking 2,15,16. A transverse cross section of the composite is shown in Fig. 2.

3.2 Fatigue testing

Fatigue tests were conducted in the 0 orientation using center-notched tensile

specimens. To minimize machining damage, the notches were formed using electrical

discharge machining. The normalized notch lengths were in the range

0.23 < ao/w < 0.35. One face of each specimen was subsequently diamond polished

to a 1 jim finish. Tests were conducted on a servohydraulic mechanical test system at

fixed stress amplitude, ACT. In all cases the stress ratio, R, was maintained at 0.1. Crack

extension was monitored using two techniques: indirect potential drop (with thin foil
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crack gauges mounted at the notch tips), and with a traveling stereo-microscope. The

loading parameters and specimen geometry were selected to elucidate the effects of

stress amplitude, ACaa, and notch size, 2ao. The transverse fatigue behavior was

measured using compact tension specimens, in accordance with the ASTM standards 17.

The extent of fiber failure during fatigue cracking was monitored using an

acoustic emission (AE) system. The system consists of a 175 kHz resonant piezoelectric

transducer, a variable gain amplifier, and a detector. The detector incorporates a

variable threshold voltage with two counting techniques. Ringdown counting records

each positive slope threshold crossing of a decaying acoustic signal, whereas event

counting records the first crossing and ignores subsequent crossings within a fixed reset

period (1 ms). The latter technique (employed in the present study) has the potential to

resolve individual fiber fractures provided that three conditions are satisfied: a) the

acoustic signal decays below the threshold within the reset period, b) multiple fiber

failures do no occur within the reset period, and c) the system settings can be adjusted

to prevent signals from alternate acoustic sources from crossing the threshold. To

determine the system settings appropriate to the Ti/SiC composite, a series of

preliminary tensile tests were conducted on monofilament composite specimens. The

specimens were prepared by extracting individual SiC fibers from the composite and

bonding the fibers onto aluminum strips using an epoxy adhesive. Tensile tests were

conducted with the transducer attached to the aluminum strip, and the number of

acoustic events associated with fiber failure recorded. The system settings were

systematically varied until individual fiber failures were consistently counted as single

acoustic events. These settings were subsequently used during fatigue testing of the

composite. Furthermore, the accuracy of the acoustic emission measurements was

evaluated by examining the tested specimens following matrix dissolution, as described

below.
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3.3 Observations

Direct observations of fiber bridging and fiber fracture were also made. For this

purpose, tested specimens were sectioned along a plane - 3mm above the matrix crack

plane, and the matrix subsequently dissolved down to a depth of - 6mm. During

matrix dissolution, the fractured fibers were removed, whereas the intact fibers

continued to span the entire length of the specimen. A comparison of the spatial

distribution of fractured fibers with the matrix crack prior to dissolution provided a

direct measure of the length over which intact fibers had bridged the matrix crack. The

fatigue fracture surfaces were also examined in a scanning electron microscopy (SEM).

4. LONGITUDINAL PROPERTIES

4.1 Measurements and Observations

Figures 3(a) - (c) show representative trends in the crack growth behavior,

plotted as crack extension, Aa, vs. number of loading cycles, N, for tests conducted at

various stress amplitudes. Here, the specimens had an initial notch size, 2ao = 3 mm.

The results are re-plotted as crack growth rate, da/dN, vs. applied stress intensity

range, AKa, in Fig. 3(d). Similarly, Figs. 4(a) - (d) show trends with notch length at a

fixed stress amplitude, AC(a = 400 MPa.

In all cases, the crack growth rates initially decreased with increasing crack

length, despite the corresponding increase in AKa. This behavior is a manifestation of

crack tip shielding !y, intac:t fibers in the crack wake. The presence of such fibers was

confirmed through comparisons between the matrix cracks following fatigue testing

and the distribution of underlying fibers following matrix dissolution: an example is

shown in Fig. 5. For tests conducted at low stress amplitudes or with small notches, the

deceleration in crack growth continued throughout the duration of the tests (Figs. 3(a),
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(b) and 4(a), (b)). In contrast, tests conducted at high stress amplitudes or large notches

exhibited a transition in which the growth rate accelerated rapidly with crack extension

(Figs. 3(c) and 4(c)). The transition was correlated with the onset of fiber :ailure. The

distribution of broken fibers following fatigue testing for one such test is shown in

Fig. 6. (These observations correspond to the data in Fig. 3(c)). In this case, the zone of

intact fibers at the end of the test was only - 300 pm (or - 2 fiber spacings).

The evolution of fiber failure during fatigue cracking was also confirmed by the

acoustic emission measurements. For tests conducted at low stress amplitudes or with

short notches, the total number of acoustic events was typically < 10. These

measurements correspond to the failure of fibers that were partially cut during

machining of the notch, an example of which is seen in Fig. 5. In contrast, tests

conducte.: at high stress amplitudes or with long notches exhibited extensive acoustic

activity, in accord with observations of fiber failure. Figure 7 shows one example of the

evolution of the number, nf, of failed fibers with crack extension, corresponding to the

test results presented in Fig. 4(c). The parameters in this figure have been normalized

such that a line of slope unity represents failure of all the fibers in the crack wake; the

region above the line 'orresponds to the incidence of fiber failure ahead of the crack tip.

In this case, fiber failure began at a relatively small amount of crack extension

(Aa/D = 2 - 3). Further crack growth was accompanied by increasing fiber failure and

a concomitant increase in crack growth rate. The acoustic emission measurements also

indicate that, beyond Aa/Dt 12, fiber failure occurs ahead of the crack tip. This point

corresponds closely to the onset of rapid crack acceleration (at N - 8,000), seen in

Fig. 4(c). SEM examination of the specimen following matrix dissolution (Fig. 8)

confirmed the number of failed fibers measured through acoustic emission (within

- 10%).

SEM examinations of the fracture surfaces revealed two notable features. Firstly,

the amount of fiber ; ullout on the fatigue fracture surface was small; typically s 2D
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(Fig. 9). This observation indicates that the fiber strength distribution is narrow, in

accord with the reported values of Weibull modulus for the SCS-6 fibers (- 10).

Secondly, the fiber coatings exhibited extensive fragmentation following fatigue

(Fig. 10(a)). Li contrast, the coatings on the fibers in the fast fracture region were left

intact (Fig. 10(b)). Evidently, the cyclic sliding leads to a degradation in the fiber

coating.

4.2 Comparison Between Experiment and Theory

The measured crack growth curves have been compared with model

predictions 7, taking into account the effect of bridging fibers on AKt. The parameters 0

and n in Eqn. 13 were taken to be those for the matrix alloy5 and are given in Table 1.

The various elastic moduli 14 are also given i,- Table 1. The material parameter that is

subject to the most uncertainty is the interface sliding stress, T. Consequently, the

approach adopted here was to compare the experimental data with model predictions

for a range of values of 1C and then assess whether consistency is achieved over the entire

range of measurements. The model predictions also accounted for fiber failure,

assuming a deterministic fiber strength, S. In this regime, the calculations were based

on a fixed value of 1T (chosen to be consistent with the data in the regime prior to fiber

failure) and comparisons made for a range of values of S. The inferred value of S was

then compared with values reported elsewhere.

Figures 3 and 4 show the comparisons between experiment and theory. In the

regime prior to fiber failure, all the experimental data are consistent with the model for

"T in the range of 15 to 35 MPa.

The values of T inferred from the fatigue tests have been compared with those

measured on both pristine and "fatigued" fibers using single fiber pushout tests18

(Fig. 11). Specimens with "fatigued" fibers were prepared by cutting composite sections
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- 600 prm thick, adjacent to a matrix fatigue crack. The sections were then ground and

polished to a final section thickness of - 400 gin. The pristine specimens were prepared

in a similar fashion, using undeformed material. The pushout tests show that the

sliding resistance of the pristine fibers is initially - 90 MPa, but decreases as the fiber

slides out of the composite. This trend has previously been rationalized in terms of the

wear of asperities on the fiber coating during sliding 19. In contrast, the sliding stress for

the fatigued fiber is initially only - 20 MPa, but subsequently increases with pushout

distance. This behavior is consistent with the extensive fragmentation of the fiber

coating following fatigue (Fig. 10). Comparisons of the data with the range of values of

,T inferred from the fatigue crack growth experiments shows broad agreement,

providing additional confidence in the utility of the mincromechanical model. However,

it must be emphasized that the fiber coatings degrade during cyclic sliding, leading to

changes in the interface sliding stress. Such effects have yet to be incorporated in the

model.

The model predictions in the regime following fiber failure are consistent with a

fiber strength of - 4 GPa (Figs. 3(c) and 4(c)): a value comparable to previous

measurements of the strength of pristine SCS-6 fibers20*.

The present observations have also been used to assess the predictions of the

"threshold" stress amplitude, described in Section 2.3. A comparison of the

measurements and predictions is shown in Fig. 12. Here, the experimental data have

been plotted for an average value of sliding stress, " = 25 MPa, with the error bars

corresponding to the uncertainty in T (15-35 MPa). Despite the rather broad

uncertainty, the observations appear to be consistent with the predictions. Specifically,

0 It is recognized that a deterministic fiber failure criterion is not, strictly speaking, applicable to ceramic
fibers. However, in the present case, the range of fiber strength is narrow and thus the criterion appears
to be adequate.
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both the experiments and the theory indicate that a transition to the regime of fiber

failure can be brought upon by increasing either AC3a or ao.

5. TRANSVERSE PROPERTIES

5.1 Measurements and Observations

In contrast to the longitudinal behavior, fatigue crack growth in the transverse

orientat~on was not accompanied by crack bridging. Indeed, the fatigue resistance of

the composite in this orientation was inferior to that of the matrix alloy. The trends in

the crack growth rate with the applied stress intensity amplitude are shown in Fig. 13.

The behavior of the composite closely parallels that of the matrix alloy, though the

growth rates are somewhat higher in the composite. SEM examinations of the fatigue

fracture surface indicate that the cracks propagate along the matrix ligaments between

fibers, with no evidence of fiber bridging or fiber fracture in the crack wake (Fig. 14).

These observations are consistent with the static tensile properties of the composite,

wherein the transverse strength is lower than that of the matrix14 .

5.2 Comparison Between Experiment and Theory

An upper bound estimate of the transverse crack growth rate in the composites

can be obtained by neglecting the fatigue resistance of the fiber/matrix interface. The

driving force for crack extension in the composite is thus obtained through a net section

correction of the form

AKt = AKa/Am (16)

where Am is the area fraction of matrix on the fracture surface. Measurements made on

the fracture surface give -Am - 0.38. This value compares favorably with one
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calculated, assuming that the fibers are arranged in a square array and that the fatigue

crack propagates along the narrowest matrix ligament between fibers, giving

Am = I - (41r/f)1/ 2 = 0.33. (17)

The model predictions based on this adjustment are shown by the dashed lines on

Fig. 13. Evidently, the predictions lie above the measured data. This result suggests

that either the fiber/matrix interface provides some fatigue resistance, or a closure effect

arises from the presence of the debonded fibers in the crack wake. The latter effect is

consistent with the thermal expansion mismatch in this composite system.

6. CONCLUDING REMARKS

The fatigue crack growth characteristics of a unidirectional, fiber reinforced metal

matrix composite have been measured and the results compared with model

predictions. The results indicate that the properties of the fiber/matrix interface play a

central role. In the longitudinal orientation, matrix cracking initially proceeds with

minimal fiber failure: the weak fiber/matrix interface allows debonding and sliding to

occur, leaving the fibers intact in the crack wake. The bridging fibers provide

substantial crack tip shielding during crack growth, as evidenced by the reductions in

crack growth rate with increased crack extension. The measurements have been found

to be consistent with the predictions of a micromechanical model in which the fibers are

assumed to be frictionally coupled to the matrix, with a constant interface sliding stress.

The values of the sliding stress inferred from such comparisons are in broad agreement

with values measured from single fiber pushout tests on fatigued specimens. These

values, however, are substantially lower than those measured on pristine fibers,
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suggesting that the fiber coatings degrade during cyclic sliding. The role of such

degradation on the cyclic traction law will be addressed elsewhere21 . In some instances,

the fibers in the crack wake fail, leading to a loss in crack tip shielding and an

acceleration in crack growth. The behavior in this regime is also consistent with the

model predictions, using a deterministic value for fiber strength. In the transverse

orientation, the weak fiber/matrix interface results in a degradation in the fatigue

resistance of the composite relative to that of the matrix alloy alone.

An important conclusion derived from both the experimental measurements and

the model predictions pertains to the use of the applied AK as a loading parameter in

describing fatigue crack growth in this class of composite. It is apparent that the

bridging effects in the longitudinal orientation are so pronounced that AKa does not

generally provide even a rough estimate of the crack tip stress field. Consequently, no

unique relationship exists b,-ween da/dN and AKa, except in the extreme cases where

the crack extension into the composite is small, i.e. less than one fiber spacing, or when

all the fibers in the crack wake have failed. Similar conclusions have been reached

regarding the use of the applied stress intensity factor in characterizing matrix cracking

in brittle matrix composites.
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FIGURES

Fig. 1 A diagram showing the influence of notch length, 2ao, and material

parameters (t, D, f, S) on the applied stress Ao/(1-R) at which fiber failure is

predicted to occur during fatigue cracking (adapted from Refs. 7 and 22).

Fig. 2 At transverse section through the composite.

Fig. 3 The influence of stress amplitude on crack growth in the longitudinal

orientation, for a notch length 2ao = 3 mm: (a) AO = 300 MPa, (b) 370 MPa,

(c) 436 MIa. The solid lines are model predictions, assuming no fiber failure

in the crack wake. The additional lines in (c) show the model predictions

incorporating fiber failure, using a sliding stress, T = 35 MPa, and 3 values of

fiber strength. (d) The data of (a)-(c) replotted in the conventional format.

Fig. 4 The influence of notch length on crack growth in the longitudinal

orientation, for a stress amplitude A'fa = 400 MPa (R = 0.1): (a) 2ao = 3 mam,
(b) 6 mm, (c) 9 mm. The solid lines are model predictions assuming no fiber
failure. The additional lines in (c) show model predictions incorporating
fiber failure, using a sliding stress '- =25 MPa, and 3 values of fiber strength.

(d) The data in (a)-(c) replotted in the conventional format.

Fig 5 Comparison between (a) a matrix fatigue crack, as seen on the external

surface, and (b) the underlying fibers following matrix dissolution. The

micrograph are at the same magnification and represent the identical region
of the specimen. The fatigue test was conducted at AGa = 300 MPa, R = 0.1,

and 2ao = 3 mm.

Fig. 6 A comparison similar to that shown in Fig. 6, for a specimen tested at
AC•a = 436 MPa, R = 0.1 and 2aO = 3 mm. Note the extent of fiber failure in

the crack wake.

Fig. 7 Evolution of fiber failure with crack extension (t is the thickness of the

composite panel).

Fig. 8 Comparison of matrix crack and underlying fibers for test conducted at
Aaa = 400 MPa, R = 0.1 and 2ao = 9 mm. Note the absence of intact fibers in

the crack wake and the extent of fiber failure ahead of the crack tip.
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Fig. 9 SEM view of fatigue fracture surface, showing the extent of fiber pullout.

Fig. 10 SEM observations of failed fibers in (a) the fatigue region, and (b) the fast
fracture region. Note the damage on the fiber coating in (a).

Fig. 11 Results of single fiber push out tests on pristine and fatigued fibers. Also

shown is the range of T inferred from the fatigue crack growth experiments.

Fig. 12 A diagram showing the conditions under which fiber failure was observed

during fatigue ci dcklxag. The line shows model prediction, based on the
results of Fig. 3. (The parameter 4 is defined on Fig. 1).

Fig. 13 Comparison of crack growth rates in composite in transverse orientation

with that of the monolithic matrix alloy. The broken lines represent model

predictions for the composite, based on a net section correction (Eqn. 16,

Am = 0.38).

Fig. 14 Fatigue fracture surface of the composite in the transverse orientation.
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TABLE 1 Mechanical Properties of Fiber, Matrix, and Composite

Matrix Modulus Em= 115 GPa [14]

Fiber Modulus Ef = 360 GPa [141

Longitudinal Composite Modulus E = 200 GPa [14]

Effective Composite Modulus E = 193 GPa*

Coefficient in Paris Law = 5.5 x 104 (m1-n/ 2) [5]

Exponent in Paris Law n = 2.8 [5]

"Calculated in Reference [7].
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ABSTRACT

Fatigue crack growth in fiber-reinforced metal-matrix composites is modeled

based on a crack tip shielding analysis. The fiber/matrix interface is assumed to be

weak, allowing interfacial debonding and sliding to occur readily during matrix

cracking. The presence of intact fibers in the wake of the matrix crack shields the crack

tip from the applied stresses and reduces the stress intensity factors and the matrix

crack growth rate. Two regimes of fatigue cracking have been simulated. The first is

the case where the applied load is low, so that all the fibers between the original notch

tip and the current crack tip remain intact. The crack growth rate decreases markedly

with crack extension, and approaches a "steady-state". The second regime occurs if the

fibers fail when the stress on them reaches a unique fiber strength. The fiber breakage

reduces the shielding contribution, resulting in a significant acceleration in the crack

growth rate. It is suggested that a criterion based on the onset of fiber failure may be

used for a conservative lifetime prediction. The results of the calculations have been

summarized in calibrated functions which represent the crack tip stress intensity factor

and the applied load for fiber failure.
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NOMENCLATURE

a matrix crack half length

ao initial notch half length

D fiber diameter

E Young's modulus of composites: f Ef + (1-f)Em

P effective composite Young's modulus considering material orthotropy

Ef Young's modulus of fiber

Em Young's modulus of matrix

f volume fraction of fibers

F(a/w) shape function for stress intensity factor: "•sec (Ita/2w)

t unbridged segment half length

n Paris law exponent

N number of load cycles

S fiber strength

w finite panel width

(X non-dimensional bridge length: (a-)I/a

13Paris law coefficient

S total crack opening displacement

15F crack opening displacement induced by bridging fibers

8A crack opening displacement caused by applied stress

AIC ratio of AKtip to AKa

AKA range in applied mode I stress intensity factor

AKtip range in mode I crack tip stress intensity factor

AS change in crack opening

Al non-dimensional measure of the stress amplitude/crack length: 2XEAa/a

AT--,o non-dimensional measure of the stress amplitude/notch length: 2XEA(Y/ao

Aa cyclic applied stress amplitude
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Aas cyclic bridging stress amplitude

X. bridging law coefficient: D(1-f)2 (Em)2 /4f2 Ef E2 ¶

v Poisson's ratio

CF applied stress

Gmax maximum applied stress

US bridging stress due to fibers

non-dimensional measure of the maximum applied stress: 4XEAa(nax/I

"t interface sliding stress

T1 non-dimensional measure of fiber strength: 4WE_ f S/I
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INTRODUCTION

Fatigue crack growth in metal matrix composites reinforced with brittle fibers

has been studied extensively (Naik and Johnson, 1991; Kantzos, Telesman and Ghosn,

1989: Sensmeier and Wright, 1990; McMeeking and Evans, 1990; Walls, Bao and Zok,

1991, 1993). Experimental results (Sensmeier and Wright, 1990; Walls, Bao and Zok,

1991, 1993) indicate the following fatigue cracking behavior. Under tensile cyclic

loading of the composite in the fiber direction, the matrix undergoes mode I fatigue

cracking normal to the fibers, while the fibers in the crack wake remain intact due to the

frictional sliding at the fiber/matrix interface. These fibers bridge the crack and shield

the crack tip from the applied stress. Consequently, a transient occurs in which the

crack growth rate da/dN diminishes upon crack extension, and a steady-state regime

follows in which da/dN is small. When the applied stress level is high, the stress in the

fiber at the original notch tip may reach the fiber strength and then the fibers begin to

fail. The crack growth thereafter accelerates again, leading to the final rupture. These

features of fatigue cracking in fiber reinforced metal-matrix composites are shown in

Fig. 1 in which a typical fatigue crack growth curve of a Ti matrix composite with SiC

fibers is replotted from the work of Walls, Bao and Zok (1991). The composite tested

contains 35% of unidirectional fibers, with fiber diameter D = 140W-n (Jansson, Deve and

Evans, 1990).

In this paper, the micromechanical model of McMeeking and Evans (1990) is

extended to predict the above fatigue crack growth behavior. The materials of

particular interest for this model include Ti/SiC composites that have "weak" interfaces.

Attention here is focused on mode I cracking that initiates from a sharp notch. Matrix

fatigue cracking in metal matrix composites in the absence of a notch has been modeled

recently by McMeeking and Evans (1990). The analysis of fiber stresses, interface

sliding and crack bridging in their model is analogous to that conducted earlier for

fiber-reinforced ceramics subject to monotonic tensile loading (Marshall, Cox and
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Evans, 1985; Marshall and Cox, 1987; McCartney, 1987). Following the analysis of

Marshall and Oliver (1987) and Cox (1990), McMeeking and Evans (1990) considered the

effect of reversal of the fiber interface sliding direction during cyclic loading. They

found that the results for bridging during monotonic loading can be scaled simply to

represent the effect of bridging during fatigue loading. The model is further developed

here to include the effects of an initial sharp notch which is unbridged by fibers at the

outset. This analysis permits the inclusion of the effect of breaking fibers which can

increase the size of the unbridged segment. The influence of finite specimen width and,

of greater importance, the role of fiber failure in fatigue cracking behavior is accounted

for too. Fatigue crack growth curves, both with and without fiber fracture, are

predicted for given values of the relevant parameters.

Calibrated functions have been devised to represent the results. One set of

functions provides values for the crack tip stress intensity factor amplitude as a function

of material parameters, the applied load, the matrix crack length and the size of the

unbridged segment of the crack. Another set of functions gives the applied load

sufficient to fail a fiber in terms of the fiber strength, material parameters, the matrix

crack length and the extent of the unbridged segment.

The results in this paper are based on individual models (for bridging fibers, for

their effect on crack tip stress intensities, for the incidence of fiber failure, for cyclic

loading of bridging fibers and for matrix fatigue) which, in one way or another, have

been developed and used previously. In addition, the basic method of analysis

employed to solve integral equations in this paper has been used widely. However, the

previous applications mostly have concerned monotonic loading of brittle matrix

composites and only the work of McMeeking and Evans (1990), Cox and Marshall

(1991) and Cox and Lo (1992a, 1992b) addressed the question of cyclic loading.

Furthermore, the earlier modelling of fatigue in fiber-reinforced metals has not fully

explored the phenomena when there are notches and failing fibers. In this paper, all of

4H:MS28(April 14, 1993)10:02 AM/mef
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the individual model elements are brought together in a treatment of matrix fatigue

crack growth in conjunction with notches and fiber failure. The models have been

shown to agree well with the available data for matrix fatigue growth with and without

fiber failure (Walls et al., 1993). Therefore, the comprehensive model in this paper is

suitable for studying in some detail the phenomena associated with this important

damage mechanism in fiber-reinforced metals to augment the insights available from

experimental data. Such features that can be studied are: the deceleration of the crack

growth rate as the matrix crack grows; the relative influence of notches; the interplay

play between applied load amplitude and the matrix crack length in controlling the

crack growth rate; and the relatively sudden and dramatic transition from survival of

fibers to failure of fibers leading to rapid crack growth as the load is increased or a

critical matrix crack length is reached and exceeded. It is true that these features can be

deduced directly or indirectly from results available in several different papers in the

literature. However, we believe that it is important to bring the results and phenomena

together and present them in a focused manner for the matrix fatigue crack growth

problem.

The model presented in this paper is based on certain assumptions. Important

ones are: the interface shear strength Tr is uniform and does not degrade during fiber

load cycling; the strength of the fibers is deterministic and not statistical; the matrix

fatigue crack growth obeys the Paris law for fatigue crack growth in the monolithic

matrix; the entire component or specimen, except for the fiber bridging, can be analyzed

elastically which implies that crack tip plastic zones are small. Some assumptions are

known to be inexact. For example, measurements have shown that the interface shear

strength "C for a fatigued specimen with a matrix crack is lower than that for a pristine

material (Warren, Mackin and Evans, 1991). This is krown to influence the crack tip

opening shape since the fiber constraint near the matrix crack tip on freshly exposed

surfaces is relatively stronger than the fiber constraint far from the matrix crack tip on

4H:MS28(April 14. 1993)10:02 AM/rmef
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old and therefore fatigued surfaces (Kantzos et al., 1989). In some cases this influences

the fatigue crack growth rate. However, there has been significant success when the

model with the fixed value for "t is compared with the data for matrix fatigue crack

growth. There are some discrepancies in the transient behavior which can be attributed

to the degradation of T. However, even those discrepancies can be rationalized in terms

of interpolation among models with a fixed "t (Walls et al., 1993).

The value of the interface shear strength T which is used to compare the models

to the experiments is usually chosen empirically to obtain one match to the steady state

crack growth rate usually observed after some crack growth in large specimens with

short cracks under modest load amplitudes. Furthermore, the fiber . mngth S is usually

chosen empirically so that onset of fiber failure in the model agrees in one case with the

initiation of fiber failure in an experiment. There is therefore an element of fitting in the

model presented in this paper. However, it should be emphasized that with this

minimal degree of fitting, the model is capable of capturing the rich interplay among

phenomena as controlled by load amplitude, peak load level, matrix crack length and

initial notch length. Furthermore, the pragmatic approach to choosing values for T and

S is made necessary by the fact that in situ properties are needed. In contrast to other

empirical material constants such as fiber and matrix elastic moduli which are relatively

unchanged in situ, it is well known that the interface shear strength 'T and fiber strength

S are sensitive to processing, treatment, handling and to fatigue cycling itself (Walls et

al., 1993).

CRACK-TIP SHIELDING ANALYSIS

Consider the crack configuration depicted in Fig. 2. The center section of length I

is unbridged. The unbridged center section can represent the original notch of length

2ao or a current unbridged segment after fiber failure. The bridged sections represent

4H.MS28(April 14. 1993)10:02 AM/mef
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the growing, mode I, plane strain matrix fatigue crack in the infinite body. With the

possibility that fibers can break, the bridge segment can become unbridged. The current

unbridged segment will then have a length 2- > 2ao. Both the fibers and the matrix are

assumed to be linear elastic, with Young's modulus Ef and Em respectively. Plasticity of

the matrix is neglected in this study. The continuous reinforcing fibers are aligned

normal to the plane of the matrix crack. The fracture energy of the fiber/matrix

interface is assumed to be small, such that debonding and sliding occur readily during

matrix cracking. The sliding behavior of the interface is characterized by a constant

frictional shear stress T, such that the bridging stress as is related to the crack opening

displacement 8 during monotonic opening by (Aveston, Cooper and Kelly, 1971;

McCartney, 1987; Hutchinson and Jensen, 1990)

8 = x, s (1)

where k is a material parameter given by

E = D(1-f)2 E/4E2 Eff2"t. (2)

The bridging stress as is the force per unit surface area applied by the fibers to the crack

surface and the opening 5 is the additional displacement of the material on one side of

the crack compared to the other due to the presence of the crack and is measured on a

gauge length larger than the interface slip zones on the fibers at the crack. In eq. (2), D

is the fiber diameter, f the fiber volume fraction and E the composite Young's modulus,

E = f Ef + (1-f) Ern. Upon cyclic loading, the change in crack opening displacement A8

after the first peak opening is related to the change in bridging stress Aas in a similar

fashion (McMeeking and Evans, 1990)
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A8= + 1 (Aus)2  (3)2

where the plus (+) and minus (-) signs correspond to the loading and unloading

portions of the cycle, respectively.

The bridging law and the theory of elasticity and fracture mechanics can be used

to solve the problem depicted in Fig. 2. Pertinent results are the distribution of fiber

stresses within the bridged zone and the crack tip stress intensity factor. Such solutions

have been obtained for both infinite and finite geometries previously by many workers

(Marshall et al., 1985; Marshall and Cox, 1987; McCartney, 1987; Cox, 1990; Cox and Lo,

1992a). A summary of the analytical method is provided in the Appendix. Values for

the bridging stress amplitude have been computed for the applied load range

0 < Al < 20 where the dimensionless parameter AT is such that

Al = 2?,EAG/a (4)

with F an effective elastic modulus for crack problems which takes the orthotropy of the

material into account (see Appendix). A representative result for the bridging stress is

shown in Fig. 3 where it is shown in dimensionless form as a function of position on the

matrix crack. Each curve represents a result for a case with a different unbridged

segment.

Two features in Fig. 3 are noteworthy. The peak stress in the bridging zone

always occurs at the edge of the unbridged segment. This implies that if fiber failure

occurs at a unique deterministic strength, it will always start at the original notch tip. In

addition, when the crack length a becomes very large, for low values of AO almost all

the applied stress is transferred through the intact fibers (i.e., Aas = A(), as indicated by

the I/a = 0 curve. The bridging stress is then rather uniformly distributed except in the
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crack tip region where Acs falls well below AG. At higher values of Ac, the fiber

stresses LAG$ are nonuniform even for long cracks and fall somewhat below A5,

indicating that the shielding effect in that case is less effective.

The stress intensity factor range at the crack tip AKtip is normalized by the stress

intensity factor range which would occur in the absence of the bridging fibers. For an

infinite body, this would be

AKA = Aca l T a. (5)

The resulting ratio is

= AKtip

AKA. (6)

Numerical results for AKC for the problem shown in Fig. 2 are plotted in Fig. 4

against the non-dimensional bridge length (a - W)/a for AI = 1, 2, 4, 8, 12 and 20. For a

small bridge, AKtip is almost the same as AKA, since the shielding effect is small. The

stress intensity at the crack tip is reduced significantly as the crack length a is increased

beyond the bridged segment to produce a large bridge. These general trends are shown

clearly in Fig. 4.

For the purpose of investigating when a fiber will fail, it is of interest to

determine the largest stress in the fibers in a given state of matrix crack length,

unbridged segment and applied stress. The maximum fiber stress, which always occur

in the fiber adjacent to the unbridged segment, is plotted in Fig. 5a against the

normalized bridge length (a-W)/a. These calculations were carried out with the bridging

law in eq. (1) and represent the stress in the fiber at maximum applied load. Results are

presented in Fig. 5a for several values of the maximum applied load Gmax. The points
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in Fig. 5a were obtained by numerical calculation. The full lines were obtained by

fitting functions to the numerical results which will be discussed below. The results in

Fig. 5a can be replotted to give the length (a-1) of the bridge which will have a

maximum fiber stress exactly equal to S as a function of the maximum applied stress

omax. This is shown in Fig. 5b. Since the unbridged segment e will grow as fibers fail,

the value of TI (defined in (10b) below) will increase when fibers break. However, in the

initial configuration with t = ao, the curves can be used to predict when the first fiber

will fail. At the beginning of fatigue crack growth, the bridge length a-t is zero and gets

bigger as fatigue cracking proceeds. Therefore, at a given maximum load, the state of

the specimen starts at the bottom of the diagram and moves upwards at constant I

(defined in (10c) below) since I is fixed at ao. This will proceed until the curve

representing the fiber strength is reached at which point the first fiber wiU fail. Thus,

the diagram predicts directly the amount of fatigue crack growth which can occur

before fiber failure will occur. Note that if the fiber strength is high enough or the

maximum applied stress is low enough, fatigue crack growth will proceed without

fibers ever failing.

The numerical results for the maximum fiber stress just discussed can be

augmented with an exact result due to Suo, Ho and Gong (1993) for the situation where

the maximum applied stress is low and the matrix crack is very long compared to the

unbridged segment. In this situation, the unbridged segment will behave like an

isolated crack since the stress transmitted through the bridge almost everywhere will be

equal to the applied stress. Only near the tip of the matrix crack and near the edge of

the unbridged segment will the bridge stress differ from the applied stress. However,

the tip of the matrix crack is too far away from the unbridged segment to have any

influence. Thus, the unbridged segment will behave like a finite crack in a uniform

stress field. Furthermore, the smallness of the applied stress will ensure that the region

of nonuniform bridge stress will be effectively small and the unbridged segment will
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behave as a crack with small scale yielding. Thus, the value of the J-integral (Rice, 1968)

for the tip of the unbridged segment is just that for a finite elastic crack in a uniform

tensile stress. Denoting the value of the J-integral to be J, we thus have

2
2Umax Ir

J (7)

when the maximum stress is being applied. An elementary result (Rice, 1968) given the

J-integral to be the energy per unit area absorbed by the bridging process and thus

j d8 = 2 (f S) 3

3 s(8)

where 80 is the crack opening displacement when 0s = f S. Thus, eq. (7) & (8) can be

combined to give

f 2X"-• (9)

or 6 = 7t) (10a)

w D(1- f)2 E2 USwhere 2" =(l0b)

E2 Ef ff IT

and I D(1 _ f)2 E am max 000
E Ef f 2 e

As noted above, this result is valid for small I and large a/l. The latter means that

(a-e)/a = ax in Fig. 5a is dose to unity. The result for I = 0.5 in Fig. 5a agrees closely
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with eq. (10a) but for I = 1 the agreement is merely good. Thus, we conclude that the

asymptotic limit in eq. (10a) can be used when 1 _< 0.5 and inspection of Fig. 5a

suggests that it will be applicable for 1/a < 0.5.

FINITE GEOMETRY

The crack tip shielding analysis performed in the previous section is based on a

model geometry of a center crack in an infinite body. Clearly, fatigue tests on

center-notched tensile specimens are conducted with finite widths. To jusiify the

relevance of the model just developed for finite widths, finite element calculations have

been carried out for such specimens using the ABAQUS code (--libbitt et al., 1990). The

specimen length 2h is much larger than the specimen width w (h/w = 10) and the

non-dimensional original notch size, ao/w is taken to be 0.2 for these calculations, as

shown schematically inset in Fig. 6.

To simulate the intact fibers that bridge the matrix crack, non-linear springs are

used, with a spring law identical to eq. (1). Crack tip stress intensity factors AKtip are

obtained through the J-integral, and normalized by the applied stress intensity, AKA

AKA = AC,1--a F(a/w) (Ila)

where F (a/w) is given in Tada et al., (1985) to be approximately

F(a/w) = rsec-. (lb)

Plotted in Fig. 6 as the solid lines are finite element results for the normalized

crack tip stress intensity amplitude AKtip/AKA against the normalized crack extension
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(a - ao)/a for AYo = I and AE. = 2 where AX 0 is the value of AYX when a = ao. The

corresponding results for the infinite body (w -- oo) are shown as the dashed lines.

Inspection of these results indicates that for (a-ao))/a < 0.6, the values of AKtip/AKA for

finite width specimen are essentially the same as those given by the infinite body

solution. Consequently for (a-ao)/a < 0.6, the results in Fig. 4 can be used for the finite

strip as long as AKA is computed according to eq. (11). These findings imply that in

general as long as a/w < 0.5, the results in Fig. 4 can be used to determine the stress

intensity factor in the finite strip.

Following the argument leading to eq. (9), we infer that the maximum stress in

the fiber adjacent to the unbridged segment is such that

2 (/,E (12a)

or i = (6r) 3[F (,/w) ]3 (12b)

when amax is small and the matrix crack is very large compared to the unbridged

segment. This result is valid for any value of 1/w as long as the applied stress is

sufficiently low so that small scale "yielding" prevails in the bridge next to the

unbridged segment (Suo et al., 1993).

CALIBRATED FUNCTIONS

It is convenient to approximate the numerical results in Fig. 4 by a set of

functions. These functions can then be used to compute results without recourse to the

numerical methods used to generate the curves in the first place. Calibration functions

of this type were pioneered by Cox and Lo (1992b) including those for finite geometries
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with center notches as in this paper and for edge notches. The functions suggested here

serve the same purpos? as those of Cox and Lo (1992b) and are presented as possible

alternatives. We state the following expression for AK = AKtip/AKA:

Aic (Al, ca) = exp {-sina [A (AZ) + B (AY-) aX + C (AX) a 2]/ct'/4)

where oa = (a - )/a (13)

A (AX) = -0.049 + 3.0 / - 0.027 / AX

B (AX) = -0.399 + 2.504 / - 3.207 / Al + 0.379 / AX3/ 2

C (A•) = 0.439 - 1.784 /4- + 1.374 / AX - 0.04 / A1 3 / 2

This approximation is accurate to within a few percent of the numerical results depicted

in Fig. 4 for the range 0.1 < A 1X •12. It is similarly close to the function devised by Cox

and Lo (1992b) for the case of the finite crack in tension. In addition, it should be noted

that the expression in eq. (13) is valid for the finite strip with AKA given by eq. (11) as

long as a/w < 0.5.

In a similar manner, a function can be fitted to the peak fiber stresses shown in

Fig. 5. This function finds its utility in predictions of fiber failure. The function is

n = L2) exp[••)] (14a)

where aX = (a - t)/a as before,

q()= x2 + (67tx2)• 1b
S=4. 9(14b)
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= 13.1 - 2.31 + 0.212 (14c)

m(.) = 14.037 - 15.327 1 + 7.237 Z2

- 1.56281 3 + 0.1274 Z 4  (14d)

and 71 and I are given by (10b) and (10c) respectively. When a = 1, the form given in

eq. (14a) represents the relationship for an infinite body split by a bridged matrix crack

with a center unbridged notch. The form given in eq. (14b) has been deduced from an

expression of Cui and Budiansky (1993) and is asymptotically exact both for small and

large I. Cui and Budiansky (1993) have shown that this expression compares well with

their numerical results for I ranging from 0.4 to extremely large values. The function in

eq. (14a) has been plotted and compared with the numerical results in Fig. 5a. It can be

seen that the agreement is good. No comparison has been made between (14a) and

numerical results for values of a not equal to unity for values of I other than those

shown in Fig. 5a. Thus the accuracy of (14a) outside the range shown in Fig. 5a (apart

from a = 1) is not known.

The form in eq. (14a) is valid for the infinite body only and forms cannot as yet be

given for the finite strip. However, based on the work of Suo et al. (1993), in the case of

the finite strip with the matrix crack extending across the entire width so that a = w, the

form

12 = e2/(1 - I/w)2 + [67C F2 (t/w) y2]2/3 (15)

can be stated with F(t/w) given by (11b). The form in eq. (15) is an interpolation

between results for small and large I in the manner of Suo et al. (1992) but using the

findings of Cui and Budiansky (1993) to give accuracy for small e/w. For cases where

the matrix extends over only a fraction of the width of the finite strip, it is possible that
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eq. (14a) can be used with 0 (1) given by the right hand side of eq. (15), (1-a) replaced

by I (w-a)/a(w-f) but -rretained as it is. The resulting behavior takes *i from zero in

the absence of bridging to the known estimate for 71 when the matrix crack extends over

the entire width of the finite strip. However, no attempt has been made to check

whether this assertion is reasonable.

MATRIX FATIGUE CRACKING

The governing equation for matrix fatigue crack growth in fiber reinforced

composite is assumed to be simply the Paris law (McMeeking and Evans, 1990)

da/dN = 1 (AKtip/Em)n (16)

where 03 and n are material parameters for the matrix material. An underlying

assumption here is that the fatigue crack growth rate in the matrix is governed by the

crack tip stress intensity amplitude, AKtip, in accord with the Paris law for the matrix

alloy alone. Therefore, the intact fibers contribute to the composite fatigue behavior

only through AKtip. In the calculation of AKtip, the composite is taken to be

homogeneous and orthotropic, and the crack front is assumed to be straight. In

practice, however, only the matrix is fatigue cracked when fibers remain intact, and the

crack front adopts a rather complex shape. As a consequence, the local stress intensity

factor amplitude will not generally be equal to the calculated AKtip values established

through idealized bridging calculations. One approximate model for the effect is that

the average stress intensity factor amplitude at the matrix crack front is equal to

AKtip/Q (14) E/Ern (Budiansky Amazigo and Evans, 1988), accounting for the reduced

area of material being cracked as well as the elastic inhomogeneity. To permit

incorporation of this effect into the model, the modulu E~n has been used in eq. (16)
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instead of Em. Thus, the Budiansky et al, 1988 model would be accounted for by use of

Em = q(1-f) //Em. However, in this paper,Era will simply be assumed to be Em and

any effect of this assumption will be compensated for in the empirical choice of a value

for '.

The fatigue crack growth law of eq. (16) was integrated with AKtip evaluated

from the expression in eq. (13) with AKA = AO "E as for the infinite body. The

calculation was carried out for exponents n = 2 and 4 and for 4 values of Al, in each

case where AXo = Al a/ao. Note that AX 0 remains constant if Aa is held fixed during

fatigue. The results for non-failing fibers are shown in Fig. 7a and 7b. The plots show

that for the load amplitudes assumed, the crack does not have to extend very far

compared to the original notch length for the rate of crack extension to diminish

dramatically.

The theoretical predictions of fatigue crack growth in Fig. 7 have two of the

features exhibited in the experimental results, i.e., a transient region in which da/dN

diminishes upon crack growth, and a seemingly steady-state region in which da/dN

remains almost constant. The non-dimensional parameter A 0o that governs the

prediction is a combination of the original notch size, material properties and the fixed

applied load amplitudes. Fatigue crack growth curves for situations with a varying

load amplitude Aa have not been presented because there are too many possibilities.

However, they can be pieced together in a rather complicated manner from the curves

for constant AXo. The appropriate procedure can be deduced from integration of

eq. (16).

It has been observed experimentally that at high values of applied stress

amplitude Ao, the crack growth rate decreases first due to the fiber shielding, reaches a

minimum value and then increases with further crack extension, as exemplified by the

crack growth curve shown in Fig. 1 (Walls et al., 1991, 1993). The acceleration in crack

growth rate has been attributed to the occurrence of fiber failure, as suggested by the
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direct observations of fiber bridging and fiber fracture along the length of the matrix

crack (Walls et al., 1991, 1993).

In practice, there is a statistical characteristic to the fiber failure process.

However, to incorporate the effects of fiber breaking into the fatigue crack growth

model just developed, a deterministic approach is adopted. The fibers are assumed to

have a unique strength S, such that they fail in the plane of the matrix crack when the

stress on them there reaches S. Both the bridging law eq. (3) and the Paris law eq. (16)

remain valid. The frictional pull-out effect of broken fibers on AKtip is neglected since

the deterministic fiber strength implies that fibers break at the matrix crack rather than

inside the material. Once the fibers begin to fail, the unbridged notch length is

continuously adjusted in the calculation to maintain a fiber stress at the unbridged

notch tip equal to the fiber strength. The conditions giving rise to this have been

presented and discussed already in connection with Fig. 5.

Of interest, however, is the relationship between the current unbridged segment

length 2t and the original notch length 2ao for a given fatigue problem. For simplicity,

attention will be confined to cases where AC is fixed during fatigue. The function in

eq. (14) can be used to predict I vs. ao during fatiguing for given fiber strength. A

particular result is shown in Fig. 8 for crack growth in an infinite body. The dashed line

on the diagonal specifies I = a, and so depicts the relationship prior to first fiber failure.

At the beginning of fatiguing, a = ao so the top right of Fig. 8 is the starting point for the

process. As the fatigue crack grows at first without fiber failure, the state of the

specimen will move down the dashed line on the diagonal towards the bottom as

indicated by the arrow. The state departs from the dashed line when fibers begin to fail.

The point of departure for several ratios of maximum applied stress to volume fraction

reduced fiber strength are marked on Fig. 8. Thereafter, as the fatigue crack grows, the

state of the specimen follows the relevant full line towards the top left of the diagram as
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indicated by the arrow. Each full line in Fig. 8 represents the relationship for the fixed

ratio of man,/fS noted at the intersection of that full line with the diagonal dashed line.

If the fibers are weak or the maximum applied stress is high, the fibers break

close to dhe matrix crack tip (ao/a is close to unity) and the bridging zone is always a

small fraction of the crack length (W/a remains close to unity as the crack grows). This

means that fibers will continuously fail dose to the matrix crack tip as the matrix crack

grows. In this case there will not be much shielding and the fatigue crack growth rate

will be similar to what would be expected in an unreinforced matrix. If the fibers are

moderately strong or the maximum applied stress is moderately high, the fibers remain

intact at first and a sizable bridging zone can develop. However when the first fiber

fails, say when ao/a = 0.5, subsequent fiber failure occurs fairly rapidly as the crack

grows. The unbridged crack length increases faster than the matrix crack length. In

that case the value of AKtip will increase quite rapidly as the matrix crack grows after

the first fiber fails. That means that the matrix crack growth rate will accelerate

significantly after first fiber failure. When the fibers are strong or the maximum applied

stress is modest, first fiber failure is delayed. However, after it occurs, say when

ao/a = 0.1, many fibers fail essentially simultaneously and the unbridged length

increases very rapidly. This causes AKtip to jump to a higher value with a

corresponding sudden increase in the crack growth rate. As noted previously, when the

fiber strength is higher than a threshold value, they will never break and the fatigue

crack growth rate will persist at the low level associated with extensively bridged

cracks. The annotation on Fig. 8 makes it dear that the sensitivity to fiber strength is

quite marked, with the different types of behavior outlined in the last few sentences

occurs over a very narrow range of fiber strengths, or equivalently over a very narrow

range of maximum applied stress.

Plotted in Fig. 9 are the fatigue crack growth curves predicted from the Paris law

eq. (18) for infinitely large specimens taking fiber fracture into account. Without fibers
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breaking, the fatigue crack growth curves are the same as those in Fig. 7. In the

presence of fiber fracture three matrix fatigue crack growth curves are presented

corresponding to three different fiber failure strengths. If fibers are relatively weak,

fiber failure occurs early on, and a gradual transition is predicted. For stronger fibers,

however, the transition occurs later but becomes more abrupt as can be seen in Fig. 9.

This sudden increase of crack growth rate is due to the sudden lengthening of the

unbridged zone after first failure of stronger fibers as depicted in Fig. 8. Once the fiber

failure process starts for strong fibers, it tends to continue rapidly until most of the

fibers fail in the bridging zone that has been previously built up. As a consequence the

crack growth rate increases suddenly and is comparable to the fatigue crack growth rate

in the unreinforced matrix. This has been observed in experiments (Walls et al., 1991,

1993).

FIBER FAILURE

The rapid growth of fatigue cracks after fibers have commenced failing, as

depicted in Fig. 9, suggests that an important strategy for design and use of fiber

reinforced metal components will be the avoidance of fiber failure. Once fibers begin to

fail after significant crack growth, they will quickly break along the fatigue crack. In

addition, further crack growth will be accompanied by more fiber failure. As a

consequence, the benefits of fiber reinforcement will be partially lost and if there are

many matrix fatigue cracks, fiber reinforcement may be significantly impaired.

Therefore, it can be suggested that the end of useful life of the composite material can be

considered to be the onset of fiber failure. It should be noted that fracture of the

composite material after fatigue crack growth will depend on a combination of the

matrix toughness and the fiber strength. This has been studied by Cui and Budiansky

(1993). However for high toughness matrices such as titanium alloys, fracture of the
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composite material after matrix fatigue and fiber failure will depend primarily on

matrix toughness. A very approximate estimate for residual composite strength after

fiber failure is therefore KIC/Nf-nb where KiC is the fracture toughness of the matrix

alloy. A more exact assessment of residual strength can be carried out using the more

accurate models of Cui and Budiansky (1993). However, an important point is that fiber

failure is a necessary precursor before the residual strength of the composite material

becomes a relevant consideration. Therefore, the life up to fiber failure is an important

determinant and the time between first fiber failure and composite fracture is likely to

be relatively short.

As noted previously, if the maximum applied stress is low enough, fibers will

never fail during matrix fatigue crack growth. It is useful to investigate the

circumstances which will ensure that fibers will remain intact throughout crack growth.

As implemented by Walls et al. (1993), this can be done by plotting the ratio of the

maximum applied stress to the fiber strength against the intercepts of the curves in

Fig. 5a with Cc = 1 (where 1/a -+ 0). The result, shown in Fig. 10, is a map determining

when fibers will fail and when they do not. The numerical results have been shown for

the infinite body in which case ao/w = 0. Below the line in the diagram, no fiber failure

will occur no matter how much matrix fatigue crack growth occurs. However, if a

component is highly stressed so that it operates above the line in the diagram,

eventually fiber failure will occur during matri-, fatigue crack growth. Walls et al.

(1993) have found this diagram to be effective in distinguishing the incidence of fiber

failure from nonfailure in experiments.

For comparison with the numerical results, a relationship derived from eq. (15)

has been plotted in Fig. 10. This is

x 2 6 2

[(r1ax (1-/a1 /w)f \[wri n (17

4H:MS28(Apnl 14, 1993)10:02 AM/mef



24

where 71 is given by eq. (10b) and F2 (ao/w) = sec (O ao/2w). It can be seen that the

prediction agrees well with the numerical results. Furthermore, the form of eq. (17)

indicates that the map can be generalized to the finite strip without significant

alteration. In view of this, the map in Fig. 10 has been presented in a form allowing for

the notch to width ratio of a finite strip.

The map in Fig. 10 can be adapted to show the extent to which crack growth can

occur in an infinite body prior to fiber failure. If the loading of a very large component

is such that according to Fig. 10 fiber failure will eventually occur, the matrix crack will

reach the length 2af and then fibers will commence failing. The ratio of this length to

the original notch length is shown in Fig. 11 for various levels of loading and original

notch length taking fiber strength and volume fraction into account. For a given notch

length, the contours in Fig. 11 indicate the permissible maximum stress for a given

extension of the matrix crack. For example, the contour marked af/ao = 2 shows the

relationship between maximum applied stress and notch length which will produce

exactly a doubling of the flaw length before fiber failure will begin to occur. Similarly

the contour for af/ao = 20 shows the maximum stress which will exactly cause the

matrix crack to reach 20 times the length of the initial notch before fiber breakage The

line with af/ao = oo is the boundary between fiber nonfailure and failure from Fig. 10

and for a maximum stress lying on or below this contour, the matrix crack can extend to

infinity without fiber failure. The plots in Fig. 7 can be used to predict how many cycles

of constant load amplitude will occur before the matrix crack reaches the extent at

which fiber failure will commence. Thus, for large components, Figs. 7 and II can be

combined to provide a basis for life estimation up to fiber failure for values of A1 0

ranging from I to 8.
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CONCLUDING REMARKS

A model has been presented for matrix fatigue crack growth emanating from a

finite notch. Predictions have been presented for the relationship between the matrix

crack length and the number of load cycles of a given amplitude. In addition, the

matrix crack length when fibers will begin to fail has been identified in terms of fiber

strength, maximum applied stress and initial notch length. These predictions have been

compared to experimental data for fatiguing of titanium/SiC fibrous composites and

the model has been shown to work well (Walls et al., 1993). As mentioned in the

introduction, the comparison between the model and the data has been based on a

number of empirical steps. Over and above the use of empirical values for fiber and

matrix elastic moduli, fiber volume fraction, fiber diameter and monolithic matrix

fatigue crack growth rates, a single value for the interface shear stress T is determined to

ensure that the steady state fatigue crack growth rate in one experiment is accurately

predicted. The transient prior to steady state matrix fatigue crack growth is then

predicted accurately without any further empiricism. Furthermore, it is then found that

when no fiber failure occurs, the model with the same value of t can predict the results

of other experiments carried out at different load amplitudes and with different notch

lengths.

Fiber failure is treated in a similar way. A value of fiber strength S is determined

that will cause the model to accurately predict the onset of fiber breakage in one

experiment. Without further empiricism, the model then accurately predicts the rate of

matrix fatigue crack growth after the initiation of fiber breakage in that experiment. In

addition, without alteration to parametric values, the model accurately predicts the

onset of fiber failure when different initial notch lengths and maximum applied stress

magnitudes are used in the experiments. The value of T used in the comparison of the

model with experimental data is consistent with in situ measurements by push out of

fibers (Warren et al., 1991) after fatigue cycling of the specimen. In addition, the fiber
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strength used in the model is in good agreement with the strength of fibers tested after

being removed from the composite by dissolution of the matrix. This strength is less

than that for pristine fibers and the reduced value is thought to be due to processing of

the composite material.
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APPENDIX

GOVERNING EQUATIONS

The equation governing the stress distribution along a bridged matrix crack

subject to a monotonic applied stress (Ymax and the bridging law eq. (1) is (Marshall and

Cox, 1987)

Z2(-)/16 + f_ is(Z) HH(t,Y)dt = Z 1-•2 (A4)

where

= 4 XE s/a (A2)

and os is the stress transmitted through the matrix crack by the fibers defined as a

traction on the crack area. Thus 05 is equal to the actual stress in the fibers at the matrix

crack multiplied by the volume fraction of fibers. In addition, X is given by eq. (2),

1 - cc = 1/a (A3)

21 is the length of the unbridged segment, 2a is the length of the matrix crack, 3 = x/a

where x is the distance from the center of the notch,

H(t,z) = - log I#t-2+
R 2 (A4)

= 4 X amx/a = 1a (A5)

4HMS2s(April 14. 1993)M02 AM/me



29

with L given by eq. (10c) and R is an effective elastic modulus taking the material

orthotropy into account.

Consider a plane strain, center crack running in the x-direction in an infinite,

orthotropic body. Results from Sih, Paris and Irwin (1965) for cracks in orthotropic

bodies can be used to provide solutions for the point force on a crack surface and

therefore for fully and partially bridged cracks. This justifies the use of R in (AI). For

example, when the coordinates x and y coincide with the principal axes I and 2 of the

orthotropic material, the crack opening displacement 8A due to the remote applied

tension 6i is (Bao et al., 1992)

BA = a4 2 X2
E 2 Ell (A6)

provided that

P (V12 V'21)"
2G12  (A7)

Consequently, the effective Youngt s modulus F is given by

2= E 1[Ej/E•]2  (A8)

where

El = E1 /(1-v 13 v 31)

E2 = E 2 /(1-v23v 32 )

v12 = (vl2 +vl 3 v2'2)/(-v,1 3v3 1 )

V2 1 = (V2 1 +V23 V3 1)/(1-V23 V32). (A9)
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In the cases where p is close to 1, P can be approximated by

For more general situations Cui and Budiansky (1993) have provided numerical values

for orthotropy factors A which can be used to determineF. The relationship between R

and A is

AE

1-v 2  (All)

in which V is the Poisson's ratio of fiber and matrix which are assumed to be the same.

The orthotropic modulus R can be used to determine the opening of the crack due to the

applied load and for the effect of fibers on the crack opening (Cui and Budiansky, 1993).

For a bridged matrix crack subject to load cycling such that the amplitude of the

applied load is Aa the bridging behavior is given by eq. (3) and the governing is

(Marshall and Cox, 1987; McMeeking and Evans, 1990)

A12(R)/16 + J1. Als(t) H(t,R)dt = AIli- (A412)

where Al is given by eq. (4) and

Als = 2 X R A~s/a (A13)
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and Aa• is the amplitude of the stress cycle at the matrix crack suwface. Note that as

shown by McMeeking and Evans (1990) is and Als obey exactly the same equation so

that results for them can be interchanged.

The equations were solved by standard methods discussed by Marshall and Cox

(1987).
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FIGURE CAPTIONS

Fig. 1 A typical fatigue crack growth curve for a Ti/SiC composite. The length Aa

of the matrix fatigue crack beyond the original notch is plotted against N the

number of load cycles. The actual dimensions of the specimen are shown in

the insert.

Fig. 2 Schematic of a center crack in an infinite body under remote tension, with

bridging fibers in the matrix crack wake.

Fig. 3 Distributions of the non-dimensional bridging stress for different unbridged
lengths for Al = 1.

Fig. 4 Non-dimensional stress intensity ranges versus normalized crack extension

for different applied stress amplitudes.

Fig. 5 Plots giving the relationship among the length of the crack, a, the unbridged
segment 1, the maximum stress in the fibers S and the maximum applied load
(Ouax.

Fig. 6 Full lines show the normalized stress intensity ranges versus normalized

crack extension for a finite width specimen computed by finite elements. The

dashed lines show the results for an infinite body computed by solution of the
integral equation.

Fig. 7 Predicted fatigue crack growth curves when fibers do not fail. The
normalized crack extension is plotted versus the normalized number of load
cycles. (a) Paris law exponent n = 2; (b) Paris law exponent n = 4.

Fig. 8 Fiber breaking rate related to fiber strength, applied load and matrix crack

growth rate; 21 is the length of the current unbridged segment of the crack,
whereas 2ao is the length of the original unbridged notch.

Fig. 9 Predicted fatigue crack growth curves in the presence of fiber failure for n = 2

and different values of ALk.

4H:MS28(April 14, 1993)10:02 AM/md
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Fig. 10 Map for fiber failure and non-failure in a finite strip with a central notch in
which a matrix crack can grow by fatigue.

Fig. 11 Relationship between applied stress, fiber strength and notch length for a
specified extension of the matrix crack before fiber failure will occur.
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The Anisotropic Mechanical Properties of a Ti
Matrix Composite Reinforced with SiC Fibers

S. JANSSON. H.E. DEVE, and A.G. EVANS

The anisotropic mechanical properties of a Ti alloy composite reinforced with SiC fibers have
been investigated and rationalized using analytical models. The appropriate material model for
this composite involves the following features: an interface that debonds and slides, a flaw
insensitive ductile matrix, and high-strength elastic fibers subject to residual compressive stress
caused by thermal expansion mismatch. This model is broadly consistent with the longitudinal,
transverse, and shear properties of the composite.

1. INTRODUCTION experimental measurements, provided that the fibers are

VARIOUS Ti matrix composites reinforced with SiC assumed to have anisotropic elastic properties, with a

monofilamecnts have been subject to assessment.'"] The transverse modulus about 70 pct of the longitudinal
modulus.present study describes measurements and preliminary in the present study, measurements and observations

analysis conducted on a Ti-15-3 alloy uniaxially rein- are prment stud prements and hasevtions

forced with SiC (SCS-6) fibers. The ultimate objective are performed to extend previous work and have the ob-

is to use measurements and analysis to establish the con- jective of developing a material model that provides an

stitutive properties of the composite, consistent with the overall rationale for the mechanical characteristics of these
deformation and fracture mechanisms operating in the composites. For this purpose, tests are performed in both

material. longitudinal and transverse tension, as well as in shear,

Previous research on these materials has emphasized accompanied by various microstructural and damage ob-Prevousreserchon hesematral ha e thsied servatbons. In addition, various analytical solutions are
some of the transverse tensile properties, particularly the used to rationalize the observations.

influence of the residual stress and incidence of interface

debonding. The higher thermal expansion coefficient of
the matrix compared to the fiber causes the interface to I1. MATERIAL
be subject to normal compression, of order 300 MPa'l
Furthermore, the 'interface" between the fiber and the The matrix is a metastable P titanium alloy: Ti-15V-
natrix is 'weakly* bonded.(. 41 Consequently, it has been 3Cr-3AI-3Sn. The SCS-6 fibers consist of a C core and
proposed that the composite exhibits elastic properties have a graded C:Si coating. The fiber diameter is typ-
characteristic of those for bonded interfaces until the stress ically 140 Am. The materials are made by hot-pressing
at the interface caused by the applied load exceeds the alloy foils between fiber tapes. The fiber volume fraction
residual compression, at about 200 MPa.1231 Thereupon, in this material is f = 0.35. A cross-sectional view re-
interface debonding occurs and reduces the longitudinal veals several features (Figure 2(a)). The fiber lay-up is
modulus to about one-third the initial value (Figure 1). randomly distributed. There are also several reaction
Subsequently, general yielding at the matrix occurs, fol- products formed around the fibers (Figure 2(b). Consis-
lowed by fracture. This sequence of events is broadly tent with previous studies,"'1 I there are three noticeable
consistent with measurements of the unloading and re- layers. The two layers adjacent to the fiber are graded
loading behavior and by observations of interface de- C: Si coatings with detectable amounts of Ti in layer B
bonding.'l' Notably, subsequent to initial loading above (Figure 2(b)). The outer layer is TiC. Also, in this com-
the debond stress, bilinear reversible unloading/reloading pos'te, a thin TiC layer exists between many of the alloy
behavior has been found, provided that the peak stress shecs.
was less than about 300 MPa (Figure 1). The "knee"
has been attributed to the stress at which the interface HI. MECHANICAL MEASUREMENTS
separates. Furthermore, debonding has been detected,
using a replica technique, at stresses above -200 MPa. A. Constituent Properties
Numerical procedures have been used to simulate this A thin tensile specimen made of the matrix material
behavior for a Ti-6V-4A1 matrix system by assuming that was produced by delaminating a matrix layer along the
the interface has a negligible fracture energy (i.e., zero TiC film, followed by grinding to produce a flat gage
mode I strength) and is subject to a friction coefficient, section, 0.1 x 5 x 30 mm. The longitudinal strain was

0.3"1 The results are broadly consistent with the measured with a 3.2-mm strain gage. The stress-strain

S. JANSSON, Research Engineer, Departient of Mechanical and curve of the foil (Figure 3) indicates that Young's mod-
Environmental EngineeringandAG. EVANS, ProfessorandChairnsin, ulus E = 115 GPa, the initial yield strength Oo0
Matermas Depmunent, m with the College of Engineeing, University 750 MPa, and the ultimate tensile strength a.,.,
of California, Sota Batbara, CA 93106. H.E. DtVE, Senior Materials
Scientist, is with 3M. 3M Center Building 60-IN-O, St. Paul, MN 950 MPa.
55144-1000. The modulus of the fibers was measured on single fi-

Manuscript submitted June 8, 1990. bers extracted from the composite. For this purpose, a
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Fig. I -A schematic of the transverse tensile characteristics of Ti
matrix composites reinforced with SiC fibes.,2-31  ....... ......... I . . . .

0.5 1.0 1.5 2.o 2.5 3.0

Strain (%)¶ ~,, W W * W WFig. 3-Tensile stress-strain curve for the matrix.

WI:.~g. @ 0 0 @ 00 somewhat lower than the cited axial value of 400 to
W W O • O * O 425 GPa.[s! The low modulus is attributed to the soft

- * * * W Wcarbon core and carbon surface layer. For reference putr-
I i poses, it is noted that the average tensile strength of the

A* 1* * O O O O O fibers S - 4.3 GPa for a 25-mi gage length and, by*OOf * O0 0assuming a Weibull distribution, the shape parameter

j~~,*m -V 9"'5 and the scale parameter So 4.5 GPa for areference length Lo = I m,.

**@ * ~B. Test Specimens for Composites
-i~ - AWOL The specimen used for both Iongitudinal and trans-

verse tests has a large radius at the transition from the
gripping section to the reduced gage section to minimize
stress concentrations. The gage section is 1-mm wide
and 6.25-mm long. The in-plane strains that develop upon
testing were measured with 3.2-mm strain gages, while
the strain in the thickness direction was obWined using

Ti C i.- 1.62-mm gages.
I ln-plane shear properties were determined with spec-

imens of losipescu type"' (Figure 4). The specimen is a

21/2

RO.030 114

Fig. 2- SEM cross section of the composite revealing (a) the overall
spatial arangement of the fibers and (b) the reaction product layeraround the fibers.

cantilever mode was used, wherein a load was imposed
at the end and the deflection measured. The average 1
Young's modulus of 50 fibers, determined by assuming 105
elastic homogeneity, was El = 360 GPa. This value is Fig. 4- A schematic of the losipescu specimen.
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short beam in antisymmetric loading, with a symmetry 20o

line in the midspan subject to pure shear. However, the Podicwd
stress is singular if the notch is too sharp and parabolic Uftrnale

if the notch is too blunt. In practice, the notch angle is A
selected to be slightly larger than critical (110 deg) in
order to bc conservative and to avoid high stress con-
centrations. The shear strain that developed was mea-
sured with two 1.62-mm strain gages mounted on opposite -

CLsides of the specimen in the gage section: one at +45 deg 2
and one at -45 deg. Properties have been obtained for lox
two fiber orientations (Figure 7): fibers oriented in the
direction of the notches, with longitudinal loading, and r
fibers oriented perpendicular to the notches, with trans-
verse loading. All tests were conducted at the strain rate
of - 10-i s- . so0 Experiment

The flexural properties were obtained in three-noint Computed
bending. Two beam lengths have been used. A long beam A P-0
(span to thickness: 8.2) provided a measure of the tensile P- 400 MPa
properties and a short beam (span to thickness: 3.7) was
used to measure the interlaminar shear properties. o 0.6

Longitudinal Strain (%)

C. Composite Properties Fig. 5-The stress-strain curve in longitudinal tension. Also shown

The measured moduli and Poisson's ratios are sum- as the triangles and circles are predicted results for two levels of re-

marized in Table I. The longitudinal tensile stress-strain sidual stress as well as the ultimate strength predicted using weakest

curve (Figure 5) indicates that the response is linear up fnk statistics.

to approximately 850 MPa, at a strain of 0.5 pct, and
the ultimate strength a, = 1800 MPa, occuring at a stran D, In Situ Measurements
of I pet. The transverse tensile stress-strain curve
(Figure 6(a)) indicates a deviation from linearity at Transverse tension tests have been conducted in situ
150 MPa at a strain of -0.15 pet and an ultimate strength in a scanning electron microscope (SEM). The test spec-
of r,. = 420 MPa at a strain of 1.2 pct. The strain in imens used in the in situ tests were similar to those used
the thickness direction (Figure 6(b)) exhibits an abrupt in the servohydraulic testing frame but with a gage sec-
increase at the onset ot nonlinearity, indicative of a vol- tion of 5 x I x 0.5 umn. The composites were tested
ume increase. Subsequently, the slope diminishes and in a SEM tensile stage,* with te fiber axis normal to
asymptotically approaches the initial elastic slope. *tnmwAmed JSM-840 stage, Ernest Fullam Inc., Ladiam, NY

Measurements of in-plane shear properties (Figure 7) 12110.

indicate that the initial elastic response for the two ori-
entations is similar but that the flow strength is notice- the plane of observation (Figure 9). Within the accuracy
ably different. Such a difference has not been observed of the optical measurements of the matrix-fiber separa-
for ductile matrix systems with bonded interfaces. tion (-0.11 pm), the experiments confirm that interface

The flexural experiments performed on long beam re- separation commences at a stress of 200 -t 10 MPa
suited in failure from the tensile surface. Based on a lin- (Figure 9). Furthermore, when the peak stress is below
ear elastic formulation, the corresponding tensile stress 300 MPa, the debond closes upon unloading (Figure 9),
at the ultimate load was 2.5 GPa. The tests on short beams with an unloading curve of the type sketched in Figure 1
resulted in nonlinearity occurring by interlaminar shear. However, upon loading above 300 MPa, debond closure
The shear stress at the onset of flow was 260 MPa does not occur upon unloading (Figure 9), indicative of
(Figure 8). plastic deformation in the matrix.

Table I. Summary of Elatic Properties

(GPa) 132 .GPa) P23 P21 (GPa)

Experiments 196 0.2S 129 0.34 0.20 62.0

Calculations bonded interface 201 0.27 171 0.32 0.23 64.4
sliding interface (" = 0) 201 - 127 - - 29

Fibefr poperties: E - 360 GPa and a' = 0.17.
Matrix propernt E ,- 113 GPa and v . 0.33.
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Fig. 7--The shear stress-strain curves measured for the two orien-

tations: also shown are the predicted curves for a bonded interface

0-0 010and a sliding interface wit T, =0.

'W -0.15 300

.4)
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0 - 0 .2 5 -L' 2 W --o I C•
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W 100lm o

0.0 0.2 0.4 0.6 0.8 1.0

Transverse Strain (%)
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Fig. 6-W(1 Stress-strain curve in transverse tension, also shown as
the dotted curve is the bilinear elastic behavior predicted with inter- 0
face debonding (b) The change in strain in the thickness orientation 02 0.4 0.6 0.6 1.0
with the imposed transverse strain showirg dte dilatation that occurs Deflection (mm)

Fig. 8 -Tie interlaninar shear-stress deflection curve obtained using
a short span three-point flexure specimen.

IV. CHARACTERIZATION It is also noted that the fracture plane is irregular, having

Specimens tested in longitudinal tension exhibit the height variability up to about 3 fiber diarr 2terr. and that

fracture characteristics depicted in Figure 10. The two extensive delamination occurs along the TiC planes. Close
most notable features are the extensive fiber/matrix sep- inspection of the fiber/matrix separations (Figure 10),
aration and the fully ductile nature of the matrix fracture. coupled with EDAX analysis, indicates two features. The
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Fig. 9-In situ observations conducted in the SEM upon transverse loading.

debonding occurred primarily at the A/B interface indicating that the fracture selects material planes that
(Figure 2(a)). with the outer carbon layer attached to the contain a higher than average area fraction of fibers.
matrix and the inner carbon layer attached to the fibers. The specimens tested in shear exhibit matrix features
Furthermore, the outer C layer exhibits multiple crack- characteristic of mode 1I ductile fracture (Figure 12). Also.
ing. The latter phenomenon is typical of brittle debond fibers are exposed by the fracture with fragments of re-
layers when attached to the ductile member of a com- action product layer attached.
posite system.191

The fracture surfaces of specimens tested in transverse
tension are also irregular. Inspection of side surfaces re-
mote from the fracture surface confirms that transverse V. PRELIMINARY ANALYSIS OF RESULTS
debonding propagates predominantly in the inner carbon A. The Material Model
coating in mode I debonding and along the A/B inter-
face in mixed mode debonding (Figure 11). Addition- A full analysis of composite behavior would require
ally, the reaction product layer exhibits radial cracks further mechanical measurements and damage observa-
normal to the transverse tension. These cracks induce tions as well as selected numerical calculations. Instead,
shear bands in the matrix, which may contribute to the the intent here is to use simple analytical results in an
failure process (Figure 1 l(c)). It is also noted that the atiempt to provide a physical rationale for the observed
area fraction of matrix on the fracture surface A,. = 0.4, composite characteristics and to use this information to

METALLURGICAL. TRANSACTIONS A VOLUME 2:A, DECEMBER IQ9l- 2979
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Fig. 10-The fracture surface of a specimen tested in longitudinal
tension: (a) a low magnification view; and (b) a close-up of a ije- (b)
bonded interface indicating the debond at A and the multiple cracked
reaction product B.

design additional experiments as well as to motivate fur-
ther numerical calculations. For this purpose, the elastic
properties, the flow stress, and the ultimate strength are
examined successively using a physically consistent ma-
terial description. The material model that seemingly
provides the best rationale, depicted in Figure 13. is con-
sistent with that suggested by previous studies.123t1 The ~ ~.
interphase between the fiber and matrix is characterized
by a debond fracture energy r7, that depends on the load-............$-
ing phase ' (increasing as 0l increases) and by a sliding 't-* t'
stress T, along the debonded interface."101 The sliding striess .'.*, 10 m
7,. in turn, depends on the stress normal to the interface, - k> i i
perhaps in accordance with a Coulomb friction coeffi-
cient, A. When the dominant debond interphase in car- (c)
bon, 17,. appears to be small110' (<1 im-). debonding Fig. I I -SEM view of the side surface of a specimen tcsted to fail-
occurs readily in all modes of loading and, conse- ure in transverse tension: (a) overview; (b) a high resolution view of
quently. the mechanical response of the interface is dom- the dehb'rded interface; and (r) a high resolution view of ctacks in
inated by sliding."" 'I Since a carbon layer is retained the reaction product layer and of shear bands induced in the matrix

2980 -VOLUME 22A, DECEMBER 1991 METALLIURGICAL TRANSACTIONS A



in the matrix, p. which is spatially quite uniform and is
given for the concentric cylinder model by'"'

0p A2o].faT

. ~~~A - Eý" AI ={- I -E EJ (I -e/Swhere E is the longitudinal composite modulus,an h , E, =Eý(l f) +Eff 12]

Fign1- sh atr, rgo fafatr uraeo pcmntse calculations"'. and with X-ray measurements.Y 31

The radial and tangential stresses in the matrix are
spatially nonuniform. but the compressive stress q nor-mal to the interface is given simply byv"='

AIt (I -Elf)A T (I-P/S(3]

ton.nNe E, 2AA(, - i'm)[4

sud~ng 7( which for the present composite is qG= -300 MPa.
I9Finally, the fibers are considered to be elastic and have

in s ,. strength properties governed by weakest link statistics.
Furthermore, the fibers a regarded as noninteracting,
because cracks in the fiber dissipate local stress concen-Smations by debonding and sliding along the interface.

F l t f are B. Elastic Properties
• The effective elastic properties for a bonded interface

and elastically isotropic fibers, based on the properties
Dobondo thaue crbers and the maberi isspted inoTable stres calce-

culated by using the homogenization method."4 It is ap-
7parent that the calculated and measured elastic propertiessadng " are relatively close, except for an appreciable discrep-

S~ancy in the transverse Young's modulus, E22. This dis-

creancy is addressed by allowing the interface to debond
in mode II and then slide at a characteristic sliding stress

c. For transverse tension, " is expected to be small be-
cause the applied load reduces the stress normal to thoseSasegments of interface susceptible to sliding (Figure 13).

Deodn: sidn In the limit ; --, 0, numerical calculations""| yield a
Ft transverse modulus similar to the measured value

(Table i). The sliding interface model must also be con-
sistent with the result that the shear modulus is the same

[i ~~ ~ ~ or LoFtuial a thtfrabndveds itensorfae in exethed lmto be -mal 0.be-

calculated shear modulus much smaller than the mea-
Fig. 13--The material model used to rationalize the mechanical be sured value (Table I). It is thus presumed that, in shear,havior of the composite: (a) mode tI debonding and sliding followed the stress normal to the interface on .the sliding segments
by mode I debonding in transverse tension: and mbu fiber cracking and
mode I1 debonding and sliding in longitudinal tension, is essentially unchanged such that the sliding stress ;

has sufficient magnitude to inhibit sliding and lead to a
modulus essentially the same as that for the bonded
interface. As elaborated below. , is inferred from the
shear tests as being of order 90 MPa. Lower values have

in the present composite, a material model based on been obtained from fiber push-through tests hear

F,-0 is assumed but with frictional sliding.
Residual stress is another important feature of the

model. Thermal expansion misfit between the fiber and
matrix is insufficient to cause matrix yielding on cool- 1. Longitudinal tension
ing"' and, consequently, elastic solutions may be used. The flow strength in longitudinal tension is unaffected

The longitudinal misfit dominates the axial residual stress by the interface and can be examined using a simple

METALLURGICAL TRANSACTIONS A VOLUME 2nA. DECEMBER 1991- 2991



parallel model. with an initial stress p in the matrix. The bilinear elastic stress-strain behavior, based on the
Yielding of the matrix should initiate at an applied stress, above value of the separation stress and using Eq. 19) to
o,,, given by estimate the behavior after debonding. is plotted in

=fEE ( - Figure 64a). This curve is comparable to the measured
=fr + (1 -f) ['O - p]15 curve for stresses up to -350 MPa. At larger stresses.

where e, is the matrix yield strain. The flow stress oa at the slip bands that extend trom the cracks in the inter-
larger strains E is faces (Figure I1) interact and further soften the material.

A model of this behavior has yet to be developed.
3. Shear

where am is the matrix flow strength at strain E + p/Em. The flow strength in shear also depends on the inter-
The stress-strain curve (a vs -) predicted using this sim- face response. For a bonded interface, a rigorous upper
pie formulation is plotted in Figure 5 for the cases bound for the flow stress when the fibers are randomly
p = 0 and p = 400 MPa. The latter agrees well with oriented is-il

the measured curve. The influence ofp on oa(E) is small, = (/ (I + 0. 17f)a. [101
however, by taking into account experimental scatter,
the experiments consistently indicate the presence of a This result, plotted in Figure 7. agaza overestimates the
compressive residual stress. The effects on the trans- measured properties. However, given the tendency for
verse properties are much more important. as elaborated mode II interfacial debonding and sliding, one hypoth-
below. esis is that the interface slides at stress r,. In this case.

2. Transverse tension thc flow strength in shear becomes
The transverse flow strength is sensitive to interface 7T

bonding and also depends on the spatial arrangement of = (1/V'lAmar, + - 7,( l - Am) f11l
the fibers. Estimates of the limit flow strength a', of com-
posites with elastic reinforcements having bonded inter-face maybe xpresedin te frmP6171The experimental curve for the weaker orientation is

consistent with Eq. 1111 when a sliding stress T, -

a', (2/V/3)a',[1 + Pff] 171 90 MPa is selected. This value is approximately twice
as high as the saturated sliding stress in pushout tests.1 ""

where a', is the reference flow strength of the matrix at
plastic strain E, and ( is a coefficient that depends on D. Ultimate Strength
the work-hardening coefficient, N, and may also depend
on the fiber volume fraction. However, the flow strength 1. Longitudinal tension
is strongly dependent on the spatial arrangement of the The ultimate strength of the composite in longitudinal
fibers." 4 ' For typical values of N, 6 is of order unity tension is dominated by the properties of the fibers. This
when f = 0.35. However, even when P3 = 0, corre- situation arises because fiber cracks induce debonding
sponding to the lower bound, Eq. [7] predicts a, - and sliding along the A/B interface (Figure 10) and this
940 MPa, substantially in excess of the measured trans- negates the concentration of stress in neighboring fibers
verse flow strength. The discrepancy is attributed to (Figure 13). Consequently, the fibers can be treated as
interface debonding. To further address the effect of de- a noninteracting fiber bundle having strength S,. The
bonding, various elasticity solutions are invoked. The composite ultimate strength or, is then
stress normal to the sliding interface at the interface poles
oa, is related to the applied stress ar, prior to debonding a', = fS, + (I - f)'),, f 1121

by where am..y is now the matrix strength at the failure strain

11 - 17v. + 6V2 + G.'(9 - 14vf- 9Vm + 14vVt)

G. 7f =G 18]

5 - 6VP + [8 - 12v- 6v.1m + l +( 3- g+ 44(

Interface separation should initiate when ar, -% q. Thus, er. The strength of the fiber bundle in the composite, S,_
based on Eqs. 14] and [8]. elastic separation is predicted usually has some dependence on the interface sliding
to occur at a transverse stress, or, - 200 MPa, consistent stress, r,. Such sliding allows failed fibers to sustain
with both the measured onset of nonlinearity (Figure 6) stresses through load transfer from the matrix. When this
and with the observations of debonding. Subsequent to transfer length is small compared with the specimen gage
debonding and while the material remains predominantly length. L,, multiple fiber failures are possible, leading
elastic, the composite would develop a reduced trans- to an ultimate tensile strength independent of L.. with
verse Young's modulus given approximately (for high S, given by'221
modulus fibers and forf z 0.4) by"9' 9 2T,L "m + I 113+

E, Em(l - 1.6f) 191 [SR(m+2)] (m+2)
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where So and Lo are scale parameters and m the shape that the cracks in the reinforcements do not act as frac-
parameter in the Weibull distribution. Conversely, when ture flaws. However. further study of the transverse
only partial load transfer occurs within the gage length. strength is needed to thoroughly investigate this impor-
S, decreases as L, decreases in approximate accordance tant implication.
with the fiber bundle solution.120'

*Note that S, = S/rui m + 1)/m]. where r is the gamma function

and .9 is the mean strength for fiber having length L,.
VI. CONCLUDING REMARKS

S, = So(Lo/meL,)"'/ [14] The longitudinal properties of a Ti-15-3 composite

To identify the relevant composite failure mode, the reinforced with SCS-6 SiC fibers are consistent with
transfer length on each side of a failed fiber i, given bvt21J simple models in which the strength is dominated by the

bundle properties of the fibers. All other properties are
strongly influenced by the fiber/matrix interface and by

R(S//2.) [15] the presence of residual stress. The experimental mea-

where Sf is the nominal stress on the fibers at the ulti- surements are qualitatively consistent with an interface

mate strength of the composite. With S, = 3.5 GPa and model wherein debonding occurs readily in both
T$ = 90 MPa, Eq. [15) gives f - 1.5 mm. The total slip modes I and 11 and frictional sliding proceeds over the

legt,2f-3 mm stu oprbet h pcmn debonded surfaces. Furthermore, sliding appears to be
length, 2 L, 3 mm, is thus comparable to the specimen influenced by the normal compression at the interface.
gage length, L, - 6.25 mam, indicating that the fiber suggestive of a Coulomb friction law. These interface
bundle solution (Eq. [ 141) is more likely to apply. In- sugtieoaCulm frconawTheitrae
bdledhe slutiona(eq. st14ng) isprediktely to appl. 1 features cause the composite flow strength in both trans-
deed, 1870 ulimae istsimirto tredicted value Eq.[1verse tension and shear to be appreciably lower than the
c(gr•- 1870 MPa, is similar to the measured value matrix flow strength.
(Figure 5). However, it is important to appreciate that Residual stress has effects on several properties. These
Eq. 113 is expected to become more relevant at larger Lod stresses chinge as the composite is subject to various

Load transfer lengths from failed fiber within the load- thermal and mechanical loadings, causing such proper-
ing span used in the three-point bending tests would again ties to depend on the thermomechanical history of the
be in the range indicative of a gage length dependence, material. In the as-processed state, the interface is sub-
qualitatively consistent with the greater strength mea- ject to normal compression. This stress suppresses initial
sured in bending than in tension. Furthermore, a stan- debonding in transverse tension and inhibits sliding in
dard weakest link analysis predicts a ratio A of the bending shear loading. Consequently, the composite exhibits bi-
to the tensile strength given by linear elastic behavior in transverse tension.

A = 12(m + l)Vl/Vb]"" 116]

where V, and Vt, are, respectively, the gage volume in
tension and the volume between the loading points in
bending. For the present case, A = 1.47, compared with REFERENCES
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Introduction

This review is intended to focus on ceramic matrix composite materials.

However, the creep models which exist and which will be discussed are generic in the

sense that they can apply to materials with polymer, metal or ceramic matrices. Only a

case by case distinction between linear and nonlinear behavior separates the materials

into classes of response. The temperature dependent issue of whether the fibers creep

or do not creep permits further classification. Therefore, in the review of the models, it

is more attractive to use a classification scheme which accords with the nature of the

material response rather than one which identifies the materials per se. Thus, this

review could apply to polymer, metal or ceramic matrix materials equally well.

Only fiber and whisker reinforced materials will be considered. The fibers and

whiskers will be identified as ceramics but with different characteristics from the

matrix. As noted above, at certain temperatures, the reinforcement phase will not be

creeping and then it will be treated as elastic or rigid as appropriate to the model. At

higher temperatures, the reinforcement phase will creep, and that must be allowed for

in the appropriate model. On the other hand, the case of creeping fibers in an elastic

matrix will not be considered, although certain of the models have a symmetry between

fiber and matrix which permits such an interpretation. The models reviewed will be for

materials with long fibers, broken long fibers and short fibers or whiskers. Aligned

fibers and two and three dimensional reinforcement by long fibers will be discussed.

However, general laminate behavior will not be a subject of this review.

The material behaviors considered will include linear elasticity plus linear or

nonlinear creep behavior. The nonlinear case will be restricted to power law rheologies.

In some cases the elasticity will be idealized as rigid. In ceramics, it is commonly the

case that creep occurs by mass transport on the grain boundaries1 . This usually leads to

a linear rheology. In the models considered, this behavior will be represented by a

continuum creep model with a fixed viscosity. That is, the viscosity is strain rate
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independent, although it will in general be temperature dependent. Thus, the mass

transport per se will not be explicit in the models. In some situations, even though the

mechanism is mass transport, the creep behavior involves a power law response with a

low exponent. Such a case is polycrystalline alumina at certain temperatures1 . This

explains the inclusion of power law models in this review. An additional constitutive

feature considered in this review is mass transport on the interface between the fiber

and the matrix. This path can be a faster route for diffusion than the grain boundaries

within the matrix. Therefore it merits a separate treatment as a mechanism for creep. A

rudimentary model for the progressive breaking of reinforcements will be discussed.

Creep void growth and other types of rupture damage in the matrix and the fiber will,

however, be excluded from consideration.

Because the creep behavior of a ceramic composite often has a linear rheology,

the behavior of the composite usually can be represented by an anisotropic viscoelastic

constitutive law. Thus, a rather general model for such composites involves hereditary

integrals with time dependent creep or relaxation moduli2-3 with a general anisotropy.

the parameters for the law can be determined through creep and relaxation tests, but a

multiplicity of experiments are required to evaluate all the functions appearing in a

general anisotropic law. As a consequence, some guidance from micromechanics is

essential for the generalization of the results. In this review, the focus will be on the

micromechanics based models and the hereditary integral methods will not be

considered. However, the micromechanics models can, if desired, be recast in the

classical viscoelastic form. It should be noted that there exists a vast literature on the

linear elastic properties of reinforced materials. These elasticity models can be

converted into creep models by use of standard methods of linear viscoelasticity 2. This

approach will be avoided in this review even though it can provide effective creep

models for ceramic matrix composites. Instead, the focus in this chapter will be on

models which involve nonlinearities or have features such as interface diffusion which
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are not accounted for when linear elastic models are converted to linear viscoelastic

constitutive laws.

Material Models

All phases of the composite material will be assumed to be isotropic. The creep

behavior of a ceramic will be represented by the law

. I ii + .-L i kk + 2B Un'SB+ i
'ij -- 2"G i 9K tj2Si+ ij"()

where i is the strain rate, O is the stress, 6 is the stress rate, G is the elastic shear

modulus, K is the elastic bulk modulus, 8ij is the Kronecker delta, B is the creep

rheology parameter, n is the creep index, S is the deviatoric stress and the effective

stress 7 is defined by

ac -21N- S (2)

a is the coefficient of thermal expansion and t is the rate of change of temperature. In

all expressions the Einstein repeated index summation convention is used. xj, x2 and X3

will be taken to be synonymous with x, y and z so that a11 = Oxx etc.. The parameter B

will be temperature dependent through an activation energy expression and can be

related to microstructural parameters such as grain size, diffusion coefficients etc. on a

case by case basis depending on the mechanism of creep involved1 . In addition, the

index will depend on the mechanism which is active. In the linear case, n = 1 and B is

equal to 1/311 where 11 is the linear shear viscosity of the material. Stresses, strains and

material parameters for the fibers will be denoted with a subscript or superscript f and

for the matrix with a subscript or superscript m.

41- MS26(Septber 1, 1992)10.2S AM/mef



5

Various models will be used for the interface between the fiber and the matrix.

For bonded interfaces, complete continuity of all components of the velocity will be

invoked. The simplest model for a weak interface is that a shear drag equal to T

opposes the relative shear velocity jump across the interface. The direction of the shear

drag is determined by the direction of the relative velocity. However, the magnitude of

"T is independent of the velocities. This model is assumed to represent friction occurring

mainly because of roughness of the surfaces or due to a superposed large normal

pressure on the interface. Creep can, of course, relax the superposed normal stress over

time, but on a short time scale the parameter Tr can be assumed to be relatively invariant.

No attempt will be made to account for Coulomb friction associated with local normal

pressures on the interface.

On the other hand, a model for the viscous flow of creeping material along a fiber

surface is exploited in some of the cases covered. This model is thought to represent the

movement of material in steady state along a rough fiber surface and is given by

(McMeeking& to be published)

vRel= a n-nj(jk(bki-nkni) (3)

where vRel is the relative velocity of the matrix material with respect to the fiber, B is a

rheology parameter proportional to B but dependent also on roughness parameters for

the fiber, n is the unit outward normal to the fiber surface and the stress is that

prevailing in the creeping matrix material. The law simply says that the velocity is in

the direction of the shear stress on the interface but is controlled by power law creep.

When there is mass transport by diffusion taking place in the interface between

the fiber and the matrix, the relative velocity is given by1

- -n(R.e) (
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where j is the mass flux of material in the plane of the interface and V is the divergence

operator in 2-dimensions also in the plane of the interface. The mass flux in the

interface is measured as the mass per unit time passing across a line element of unit

length in the interface. The flux is proportional to the stress gradient so that

D= _Van (5)

where D is an effective diffusion coefficient and

ann = n.O.n (6)

is the normal stress at the interface. Combination of eq. (4 & 5) for a homogeneous

interface gives

vRel = n D V 2 aynn. (7)

The diffusion parameter D controls mass transport in a thin layer at the interface and so

its relation to other parameters can be stated as1

D = 83
kT (8)

where 8 is the thickness of the thin layer in which diffusion is occurring, Dib is the

diffusion coefficient in the material near or at the interface, Q is the atomic volume, k is

Boltzmann's constant and T is the absolute temperature. The diffusion could occur in

the matrix material, in the fiber or in both. The relevant diffusion parameters for the

matrix, the fiber or some weighted average would be used respectively.
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It is worth noting that the "rule of mixtures" for stress, stress rate, strain and

strain rate is always an exact result in terms of the averages over the phases4 . That is

jij =f Ofij + (I1- f) (FT (9)

=i f e + U - f) (10)

etc. where the unsuperscripted tensor variables are the averages over the composite

material and the superscripted variables are the averages over the fibers (f) and the

matrix (m) respectively. The volume fraction of the fibrous phase is f. The result

applies irrespective of the configuration of the composite material, e.g. unidirectional or

multidirectional reinforcement. However, an allowance must be made for the

contribution arising from gaps which can appear such as at the ends of fibers. The

difficulty in the use of the rule of mixtures is the requirement that the average values in

the fibers and in the matrix mist be known somehow.

Materials with Long Intact Fibers

Creep laws for materials with long intact fibers are relevant to cases where the

fibers are unbroken at the outset, and never fracture during life. As a model, it also

applies to cases where some but not all of the fibers are broken so that some fibers

remain intact during service. Obviously these situations would occur only when the

manufacturing procedure can produce composites with many or all of the fibers intact.

In the problem of the creep of materials with intact unidirectional fibers, as

shown in Fig. 1, most of the insights arise from the compatibility of the strain rates in

the fibers and in the matrix. When a stress rzz is applied to the composite parallel to
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the fibers, the strains and strain rates of the fibers an,- .,ie matrix in the z-direction must

be all the same5. This gives rise to a creep law of the form

izZ - Tzz + 4zz + aZL t
EL (11)

and

VLOCzz+
EL 

(12)

where EL is the longitudinal composite modulus, t is the longitudinal creep strain

rate, aL is the longitudinal coefficient of thermal expansion, VL is the Poisson's ratio for

the composite relating t ansverse el.lstic strain to longitudinal stress, tx is the

transverse creep strain rate and aT is the transverse coefficient of thermal expansion.

The temperature is taken to be uniform throughout the c•rmposite material. Evolution

laws for the creep rates are required and these laws involve the stress levels in the

matrix and fibers. Thus, in turn, evolution laws are required for the matrix and fiber

stresses.

The exact' iawz bas.ed on continuum analysis of the fibers and the matrix would

be very complicated. The analysis would involve equilibrium of stresses around and in

the fibers and compatibility of matrix deformation with the fiber strains. Furthermore,

end and edge effects near the free surfaces of the composite material would introduce

complications. However, a simplified model can be developed for the interior of the

composite material bawed on the notion that the fibers and the matrix interact only by

having to experience the same longitudinal strain. Otherwise, the phases behave as two

uniaxially stressed materials. McLean 5 introduced such a model for materials with

elastic fibers and he notes that McDanels, Signorelli and Weeton 6 developd the model
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for the case where both the fibrous and the matrix phase are creeping. In both cases, the

longitudinal parameters are the same, namely

EL = f Ef + (1-f)Em (13)

(XL = [f Ef af + (1 - f) Em O(m]/EL (14)

týz = [f Ef Bf on, + (1 -f) Em BmE nm]/EL. (15)

When the fibers do not creep, Bf is simply set to zero. The longitudinal stress Ozz in the

fibers and the matrix are denoted of and am respectively. To accompany eq. (13-15),

evolution laws for the fiber and the matrix stresses are required. These are

nfff =EF (t. - Bf of - af T) (16)

and

•r = E m (tz - Bm (,nn -_ m C . (17)

Indeed, combining these by the rule of mixtures, eq. (9), leads to eq. (13) to (15).

Since the fibers and the matrix do not interact transversely, the model implies

that no transverse stresses develop in the matrix or the fibers. The rule of mixtures,

eq. (10), then leads to

v. = f Vf + (0-f)Vm (18)

aT = f af + (1 - f) am + f (1 - f) (af - Otm) (Vf Em - Vm Ef)/EL (19)
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and

+ f (1 - f) (B. OMm - Bfof (vf ) E. - Vm Ef)/EE. (20)

The data suggest that the elastic parameters in this model are reasonably good to first

order7 and experience with plasticity calculations8,9,10 indicates that there is little plastic

constraint between fibers and matrices at low volume fractions. Thus, the model should

work reasonably well for any creep exponents at low volume fractions of fibers.

Indeed, McLean5 has used the isothermal version of the model successfully to explain

longitudinal creep data for materials with non-creeping fibers.

Of interest, is the prediction of the uniaxial stress model when the applied stress

and the temperature are held constant. The governing equations (19), (16) & (17) then

have the feature that as time passes the solution always tends towards asymptotic

values for stress in the fibers and the matrix. The evolution of the matrix stress occurs

according to

[. i.-Ea I= Bmaf I B alff (21)

and it can be shown that for any initial value of matrix stress, the matrix stress rate

tends to zero. Therefore, the matrix stress tends toward the value which makes the

right hand side of eq. (21) equal to zero. This can be solved easily for four common

ceramic cases. One is when both matrix and fibers creep with a linear rheology so that

both creep indices are equal to one. In that case the stresses tend towards the state in

which
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Bf a
fBm + (1-f)Bf (22)

and

Bm0

fBm + (1-f)Bf. (23)

Another case is when the fibers creep linearly and the matrix creeps with an index of 2.

Then the matrix tends towards a stress

(BK)[f (Bin + (if) + (24)

and of course am = [a - (1 - f) (7mJ If. The opposite case of a linear matrix and

quadratic fibers is such that the fibers tend towards the stress

Bf= ( B f + 4(1--- f2 2(1-f) (25)

and am = [a - f af]/(1 - f). Finally, when the fibers do not creep, the matrix stress tends

towards zero and the fiber stresses approach a/(1 - f).

In the latter case, the transient stress can be stated as well. The isothermal result

for constanto'a is5

(n-l1)fEfEmBt + 1 ,}l-na• (t) = + o,0)"•(6
EL [a 19 0:.2 AM/e(26)
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when n •1 and

Om (t) = am (0) exp (-f Ef Em B t/EL) (27)

when n = 1. The subscript on the creep rheology parameter for the matrix has been

dropped and the unsubscripted B refers to the matrix henceforth. In both cases

of = [a - (1 - f) Om]/f and the composite strain is af/Ef. The stress at time zero would

be computed from the prior history with t = 0 being the time when both the temperature

and the applied stress become constant. For example if the temperature is held constant

at creep levels until equilibrium is achieved and then the load is suddenly applied,

aOm (0) = a Em/EL. To the extent that there are any thermal residual stresses at t = 0,

they will contribute to am (0). However, eq. (26) & (27) make it clear that thermal

residual stresses will be relaxed away be creep.

Steady Transverse Creep with Well-Bonded Elastic Fibers The previous paragraph

has made it clear that if there are elastic fibers and a constant macroscopic stress is

applied, the longitudinal creep rate will eventually fall to zero. With constant

transverse stresses applied as well, the process of transient creep will be much more

complicated than that associated with eq. (27) and (28). However, it can be deduced

that the longitudinal creep rate will still fall to zero eventually. Furthermore, any

transverse steady creep rate must occur in a plane strain mode. During such steady

creep, the fiber does not deform further because the stress in the fiber is constant. In

addition, any debonding which might tend to occur would have achieved a steady level

because the stresses are fixed.

For materials with a strong bond between the matrix and the fiber, models for

steady transverse creep are available. The case of a linear matrix is represented exactly
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by the effect of rigid fibers in an incompressible linear elastic matrix and is covered in

texts on elastic materials 7,11,12. For example, the transverse shear modulus, and

therefore the shear viscosity, of a material containing up to about 60% rigid fibers in a

square array is approximated well by11

1+2f
GT Gm

1-f (28)

It follows that in the coordinates of Fig. 1, steady transverse creep with well bonded

fibers obeys

- 3B( 1-f ")(YY XX) (29)

and

3B( 1-f oFX
xy T(, 2 fxy (30)

with -zz = 0. A material with fibers in a hexagonal array will creep slightly faster than

this. Similarly, creep in longitudinal shear with fibers in a square array can be

approximated well by

txz 3B(1-f)7x
2 1= --(31)

and

t 3B(1 -
e:yz = 2 11+,f)yz (32)
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There are few comprehensive results for power law matrices. Results given by

Schmauder and McMeekingl Ifor up to 60% by volume of fibers in a square array with a

creep index of 5 can be represented approximately by

txx = - tyy = 0.42 B I (oXx - y (ax-ay)/S5  (33)

where tzz = tXy = Try = 0

S = (1 + f2)/(1 - f) (34)

is the creep strength, defined to be the stress required for the composite at a given strain

rate divided by the stress required for the matrix alone at the same strain rate. The

expression in eq. (34) is only suitable for n = 5. The result in eq. (33) when f = 0 is the

plane strain creep rate for the matrix alone. Results for ,xy * 0 are not given because of

the relative anisotropy of the composite with a square array of fibers. Relevant results

for other power law indices and other fiber arrangements are not available in sufficient

quantity to allow representative expressions to be developed for them.

Three-Dimensional Continuous Rgeinforcement This configuration of reinforcement

can be achieved by the use of a woven fiber reinforcement or interpenetrating networks

of the two phases. Another possibility is that random orientation of whiskers produces

a percolating network and even if the whiskers are not bonded together, this network

effectively forms a mechanically continuous phase. In the case of woven

reinforcements, there may be some freedom for the woven network to reconfigure itself

by the straightening of fibers in the weave or because of void space in the matrix. Such

effects will be ignored and it will be assumed that the fibers are relatively straight and

that there is little or no void space in the matrix. A straightforward model for these
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materials is that the strain rate is homogeneous throughout the composite. The

response is then given by

di = 2G tj + (K - 2 6) ij kk- 3K&t Sij

'-nf-I f -nm-1 (
-3fGfBfof )Sfij - 3 (1 -f) Gm Bm Om S~j (35)

where

Sf Gf + ( - f) Gm (36)

k = f Kf + (1- f)Km (37)

and

S= f af Kf + (1 - f) Om Km. (38)

The evolution of the fiber and matrix average stresses appearing in the last two terms in

eq. (35) is given by eq. (35) with f = I and f = 0 respectively. It is of interest that the

constitutive law in eq. (35) is independent of the configuration of the reinforcements

and the matrix. As a consequence, the law is fully isotropic and therefore may be

unsuitable for woven reinforcements with unequal numbers of fibers in the principal

directions. In addition, the fully isotropic law may not truly represent materials in

which the fibers are woven in 3 orthogonal directions. Perhaps these deficiencies could

be remedied by replacing the thermoelastic part of the law with an appropriate

anisotropic model. A similar alteration to the creep part may be necessary but no

micromechanical guidance is available at this stage.
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If the composite strain rate is known, the composite stress during steady state

isothermal creep can be computed from the rule of mixtures for the stress, eq. (9). This

gives

Sij = 2 ] 
• + ij (39)

Bf n B B Bf ( m(39)

where t must be deviatoric (i.e. tkk = 0) and

2..ij ij (40)

A hydrostatic stress can be superposed, but it is caused only by elastic volumetric strain

of the composite. The result in eq. (39) is, perhaps, not very useful since it is rare that a

steady strain rate will be kinematically imposed. When both fiber and matrix creep, the

steady solutions for a fixed stress in isothermal states are quite complex but can be

computed by numerical inversion of eq. (39). The solution can however be given for the

isothermal case where the fibers do not creep. (For non-fiber composites, this should be

interpreted to mean that one of the network phases creeps while the other does not.)

The matrix deviatoric stress is then given by

SiJ (t) = S ( 3(n0-) )fGfGmBt/? + (.m(0))1-n

S(0) (41)

when n # 1 and for n = 1

S'i(t) = Sign(0) exp(-3f Gf Gm B t/Ce). (42)
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The subscripts on B and n have been dropped since only the matrix creeps. The

interpretation of time and the initial conditions for eq. (41) & (42) are the same as for

eq. (26) & (27). The fiber deviatoric stresses are given by

S= [i -- (1-f) ST1 ]/f (43)

and the composite deviatoric strain eij is therefore

eij = Sj/2 Gf. (44)

The volumetric strains are invariant and given by

Ekk = Okk/3 K. (45)

As expected, the matrix deviatoric stresses will be relaxed away completely.

Thereafter, the "fiber" phase sustains the entire deviatoric stress. As a consequence, in

the asymptotic state

; = Sij/f (46)

and the composite strain will be given by (44) to (46) as

Cii + I3-K - .(4j7)£i1 = 2fGf -" 2fGf 3 (47)

It follows that in uniaxial stress, with o= = a and Czz = C, the asymptotic result will be
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L 3f-Gf 9 (48)

This result indicates that the composite will have an asymptotic modulus slightly stiffer

than f Ef because the matrix phase is capable of sustaining a hydrostatic stress.

Two-Dimensional Continuous Reinforcement This configuration of reinforcement

occurs when fibers are woven into a mat. It could also represent whisker reinforced

materials in which the whiskers are randomly oriented in the plane, especially if

uniaxial pressing has been used to consolidate the composite material. In the case of the

whisker reinforced material, it is to be assumed that their volume fraction is so high that

they touch each other. The whiskers have either been bonded together, say by

diffusion, or the contact between the whiskers acts, as is likely, as a bond even if tere is

no interdiffusion.

In a simple model for this case, which as in the 3-d case ignores fiber

straightening and anisotropy of the fibrous network, a plane stress version of eq. (35)

can be developed. As such, it can only be used for plane stress states. Consider the x-y

plane to be that in which the fibers are woven or the whiskers are lying. The strain rates

in this plane are taken to be homogeneous throughout the composite material and am,

Oxz and Oyz are taken to be zero. The resulting law is

oa• = 2G EP + j7--8ap y -L2-1• t• I-

-3fGf Bf Uf-1 fS + (1-Vf) 8'0 S

-3(1-f)Gm Bmnm1[SM +÷ Vm 8 Sl
v6 (O-V.) (49)
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where Greek subscripts range over 1 & 2 and where

Vf+_yV = f% G,__'f + (I -f) G Vm /•
1 •1 - vf - vm (50)

and

& [aff+Vf +(fC 1+Vr](+ )6C = ff af G -f + (1 -f)m an, G -v. . 5

The fiber and matrix evolution laws for stress are identical to eq. (49) with f =0 and f = 1

respectively. Being isotropic in the plane, this law suffers from the same deficiencies as

the 3-d version regarding the orthotropy of the woven mat and any inequality between

the warp and the woof. As before, this could be remedied with an anisotropic version

of the law.

In steady state isothermal creep, the relationship between in plane components of

stress and in plane components of strain rate are given by

[1. nf +-n

ap = - tap+ +- sap)

(52)

with Oz = lyz = =ozz = 0 and with E given by eq. (40) but with txz = tyz = O. As in the

3-d case, this must be inverted numerically to establish a steady state isothermal creep

rate for a given imposed stress.

When the fibers are elastic and non-creeping, the isothermal behavior at fixed

applied plane stress is given in terms of the deviatoric stress by eq. (41) or (42) and
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eq. (43). The expression for the deviatoric composite strain, eq. (44), still applies.

However, the composite strain obeys

3 (1 f) Z3-B U'- (1 + VM)1) sM
2 G m (Gv)(1v•m) SY (53)

and

S f - -f + (I- f) • 3(1 0-Bf) (n- m

[fVf 1-Vrn] 2 - 2-Vm) B(4)

The latter result indicates that the volumetric strains can be relaxed to some extent by

matrix creep. This contrasts with the 3-d case where complete compatibility of strains

precludes such relaxation. The extent to which the relaxation occurs has not yet been

calculated. However, if it is assumed that the relaxation can be complete so that the

matrix volumetric strain is zero, then the fiber stress tends towards GaP/f and therefore

the composite strain approaches

-l+Vf v
f Ef f Ef (55)

which, of course, is restricted to plane stress. It can be seen that in uniaxial stress, the

effective asymptotic modulus would now equal f Ef. A properly calculated solution for

ekk (t) is required to investigate whether this result holds true.
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Uniaxial Reinforcement with Long Brittle Fibers

The reinforcement configuration of interest now is once more that depicted in

Fig. 1 and the loading will be restricted to a longitudinal steady stress (z. The

possibility will be taken into account that the fibers might be overstressed and therefore

could fail. Only elastic fibers which break in a brittle manner will be considered,

although ceramic fibers are also known to creep and possibly rupture due to grain

boundary damage. Frictionally constrained fibers only will be considered since well

bonded fibers will fail upon matrix cracking and vice versa. The case where the fibers

have a deterministic strength S can be considered. In that situation, the fibers will

remain intact when the fiber stress is below the deterministic strength level and they

will break when the fiber stress exceeds the strength. The fracturing of the fibers could

occur during the initial application of the load, in which case elastic analysis is

appropriate. If the fibers survive the initial application of the load, then subsequent

failure can occur as the matrix relaxes according to eq. (26) or (27) and the fiber stress

increases. Thus the time elapsed before first fiber failure can be estimated base& on

eq. (26) or (27) by setting the fiber stress equal to the deterministic strength. This

predicts that failure of a fiber will occur when

(Ym = [0 - fS]/(1-f) (56)

from which the time to failure can be computed through eq. (26) or (27). The failure of

one fiber in a homogeneous stress state will cause a neighboring fiber to fail nearby

because of the fiber/matrix shear stress interaction and the resulting localized load

sharing around the broken fibpr. Thus a single fiber failure will tend to cause a

spreading of damage in the form of fiber breaks -iear a single plane across the section.

This will lead to localized rapid creep and elastic strains in the matrix near the breaks

perhaps giving rise to matrix failure. It follows therefore that tertiary failure of the
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composite will tend to occur soon ,'ter the occurrence of one fiber failure when the fiber

strength is deterministic.

Tertiary failure processes akin to this have been modelled by Phoenix and

coworkers 13-15 in the context of epoxy matrix composites. Indeed, they show that such

tertiary failures can occur even when the fiber strength is statistical in nature. This

mechanism will not be pursued further in this paper but some other basic results

considered on the assumption that when there is a sufficient spread in fiber strengths

such tertiary failures can be postponed well beyond the occurrence of first fiber failure

or indeed eliminated completely. Thus, attention will be focused on fibers which obey

the classical Weibull model that the probability of survival of a fiber of length L stressed

to a level of is given by

P 5 (oe
P exp[

Lg , S (57)

where Lg is a datum gauge length, S is a datum strength and m is the Weibull modulus.

Clearly the resutts given below can be generalized to account for variations on the

statistical form which differ from eq. (57). However, the basic ideas wili remain the

same.

Long Tertm, Creep Threshold Consider a specimen of length Ls containing a very large

number of wholly intact fibers. A stress a is suddenly applied to the specimen parallel

to the fibers. The temperature has been raised to the creep level already and i -now

held fixed. Upon first application of the load, some of the fibers will break. The sudden

application of the load means that the initial response is elastic. This elastic behavior

has been modelled by Curtin 16 among others but details will not be given here. If the

applied stress exceeds the ultimate strength of the composite in this elastic mode of
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response, then the composite will fail and long term creep is obviously not an issue.

However, it will be assumed that the applied stress is below the elastic ultimate

strength and therefore creep can commence. It should be noted, however, that matrix

cracking can occur in the ceramic matrix and the characteristics of creep relaxation

would depend on the degree of matrix cracking. However, this aspect of the problem

will not be considered in detail. For cases where there is matrix cracking and for which

the specimen length Ls is sufficiently long, Curtin 16 has given the theoretical prediction

that the ultimate elastic strength is

S-u = f [4 L9 Sm -t/iD (m + 2)]1/(m+1) (m + 1)/(m + 2) (58)

where " is the interface shear strength between the fiber and the matrix and D is the

diameter of the fibers. The interface shear strength is usually controlled by friction. For

specimens shorter than 8 c, the ultimate brittle strength exceeds Su where 8c is given

by16

S= [S q1/ D/2 TIm/(m+l) (59)

This critical length is usually somewhat less than the datum gauge length.

When the applied stress a is less than Su, creep of the matrix will commence after

application of the load. During this creep, the matrix will relax and the stress on the

fibers will increase. Therefore, further fiber failure will occur. In addition, the process

of matrix creep will depend on the extent of prior fiber failure and, as mentioned

previously, on the amount of matrix cracking. The details will be rather complicated.

However, the question of whether steady state creep or, perhaps, rupture will occur or

whether sufficient fibers will survive to provide an intact elastic specimen can be

answered by consideration of the stress in the fibers after the matrix has been assumed
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to relax completely. Clearly, when the matrix carries no stress, the fibers will at least fail

to the extent they do in a dry bundle. It is possible that a greater degree of fiber failure

will be caused by the transient stresses during creep relaxation, but this effect has not

yet been modelled. Instead, the dry bundle behavior will be used to provide an initial

estimate of fiber failure in these circumstances.

Given eq. (57), the elastic stress strain curve for a fiber bundle is

as = f Ef E exp[ -Ls- (E---•--L ] (60)

Thus when a stress a is applied to the composite, creep will occur until the strain has

the value consistent with eq. (60). Numerical inversion of eq. (60) can be used to

establish this strain. The stress-strain curve in eq. (60) has a stress maximum when

Ef m L. (61)

with a corresponding stress level given by

=Y m exp ( m/r)
S( m(62)

This result is plotted as a function of m in Fig. 2. If a < %C, the composite will creep

until the strain is consistent with eq. (60) and thereafter no further creep strain will

occur. Of course, the non creeping state will be approached asymptotically. (It should

be noted that due to possible fiber failure during the creep transient, the true value for

ac may lie below the result given in eq. (62).) For an applied composite stress equal to
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or exceeding ac, creep will not disappear with time because all of the fibers will

eventually fail and the strain will continue to accumulate.

The critical threshold stress for ongoing creep given by eq. (62) is specimen

length dependent. For very long specimens, the threshold stress is low whereas short

specimens will require a high stress for ongoing creep to continue without limit. On the

other hand, the ultimate brittle strength as given by eq. (58) for a composite specimen

longer than Sc is specimen length independent. Thus there are always specimens long

enough so that ac is less than Su. This means that the specimen can be loaded without

failure initially and if Cr exceeds arc, the specimen will go into a process of long term

creep. (It should be remembered, however, that this model is based on the assumption

that tertiary failure is delayed and does not occur until a substantial amount of matrix

creep has occurred.) For shorter specimens, the relationship between Cc and Su

depends on the material parameters appearing in eq. (58) and (62). However, for

typical values of the parameters, Cc is less than Su so that there is usually a window of

stress capable of giving rise to long term creep without specimen failure when the

specimen length exceeds 8 c. Typical values for the parameters are given by, among

others, Hild et al.17. From these parameters, predictions for (Tc can be made. For

example, a LAS matrix composite containing 46% of SiC (Nicalon) fibers (m equals 3 or

4) is predicted to have a value for ac between 400 MPa and 440 MIa for a specimen

length of 25 mm whereas its measured ultimate brittle strength is between 660 MPa and

760 MIa. At 250 mm specimen length, the long term creep threshold ac is predicted to

fall to the range 185 MPa to 250 MPa. Similarly, a CAS matrix composite with 37% SiC

(Nicalon) fibers (m equals 3.6) in a specimen length of 25 mm is predicted to suffer long

term creep if the stress exceeds 160 MPa whereas the measured ultimate brittle strength

is 430 MUa. For a 250 mm specimen length, this creep threshold is predicted to fall to

85 M1Pa. Thus "t is clear that in some practical cases, applied stresses which are modest

fractions of the elastic ultimate strength will cause long term creep.
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Steady State Creep For specimens which have (i) previously experienced an applied

stress exceeding the long term creep threshold or (ii) which had every fiber broken prior

to testing or service (e.g. during processing) or (iii) which had few fibers intact to begin

with so that initially the long term creep threshold is much lower than acy as predicted

by eq. (62), a prediction of the long term creep behavior can be made. Prior to this state,

there will, of course, be a transient which involves matrix creep and, perhaps, the

fragmentation of fibers. This transient has not been fully modelled. Only a

rudimentary assessment of the creep behavior has been made revealing the following

features.

For those composites initially having some of the fibers intact, there will always

be some which must be stretched elastically. This will require a stress which will tend

towards the value given by eq. (60) with f replaced by fi, the volume fraction of fibers

initially intact. If a relaxation test were carried out, the stress would asymptote to the

level predicted by eq. (60). The remaining broken fibers will interact with the matrix in

a complex way, but at a given strain and strain rate, a characteristic stress contribution

can be identified in principle. Details have not been worked out. However, the total

stress would be the sum of the contribution from the broken and unbroken fibers. If

the transient behavior is ignored (i.e. assumed to die away relatively fast compared to

the strain rate) a basic model can be constructed.

Steady State Creep with Broken Fibers First, consider a composite with a volume

fraction f of fibers, all of which are broken. There are two possible models for the

steady state creep behavior of such a material. In one, favored by Mileiko1 8 and

Lilholt1 9 among others, the matrix serves simply to transmit shear stress from one fiber

to another and the longitudinal stress in the matrix is negligible. The kinematics o! this

model requires void space to increase in volume at the ends of the fibers. However,
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with broken fibers there is no inherent constraint on this occurring. Furthermore, if

matrix cracking has occurred, the matrix will not be able to sustain large amounts of

longitudinal tension and its main role will be to transmit shear from fiber to fiber.

Indeed, matrix cracking will probably promote this mode of matrix flow since there will

be no driving stress for other mechanisms of straining. The other model, favored by

McLean 20 and developed by Kelly and Street21 involves a stretching flow of the matrix

between fibers at a rate equal to the macroscopic strain rate of the composite material.

This requires substantial axial stress in the matrix. In addition, volume is preserved by

the flow and there is no need for space to develop at the end of the fiber. The model

requires a considerable matrix flow to occur transporting material from the side of a

given fiber to its end and the injection of matrix in between adjacent ends of the broken

fibers. There is good reason to believe that the Mileiko18 pattern of flow prevails when

there are broken fibers.

In a version of the Mileiko 18 model in which it is assumed that each of six

neighboring fibers has a break somewhere within the span of the length of a given fiber

but that the location of those breaks is random within the span, the relationship

between the steady state creep rate and the composite stress is (McMeeking,

unpublished work)

S= g (n, f) (D/L)n+l B (yn (63)

where L is the average length of the broken fiber segments and

gM(n,tf) = 25[er(2n +,1)]n r(1 )1 AMe2f
I 2n f (n-I1) (64)
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when n * 1 and

g(lf) = (9/f) fn(ll/-. (65)

These functions have been computed for uniform fiber length and based on a hexagonal

shape for the fiber even though interpreted to be circular. That explains why creep

strength goes to infinity at f = 0 rather than at f less than 1. In this creep model, the

influence of both volume fraction and the aspect ratio L/D on the strain rate is clear

with both having a strong effect. As noted, this model could serve as a constitutive law

for the creep of a material in which all of the fibers are broken to fragments of average

length L. In addition, it could be used for short fiber composites which have weak

bonds between the fiber end and the matrix so that debonding can readily occur and

void space can develop as a result. However, the aspect ratio L/D should be large so

that the Mileiko 18 flow pattern will occur and end effects can be neglected when the

composite creep law is computed.

The shear stress transmitted to a fiber is limited to the shear strength T. As a

result, the formula given in eq. (63) is valid only up to a composite macroscopic stress of

2nf (L+

2n+1 D) (66)

for both the linear and nonlinear cases. According to the model, at this level of applied

stress, the shear stress on the fiber interface will start to exceed T. Therefore, at stresses

higher than the value given in eq. (66), the strain rate will exceed the level predicted in

eq. (63). This situation will persist in the presence of matrix cracks up to a composite

macroscopic stress of
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OLIM = f t L/D (67)

at which stress the entire fiber surface is subject to a shear stress equal in magnitude to

"t. Then, the mechanism represented by eq. (63) provides an indeterminate strain rate as

in rate independent plasticity. Thus OLIM can be thought of as a yield stress. This

concept is probably satisfactory for materials with many matrix cracks so that there is

no constraint on stretching the matrix. However, when there are no matrix cracks, the

strain rate is probably controlled by the mechanism which generates void space at the

fiber ends. This has been considered to require negligible stress in the version of the

model leading to eq. (63). For a proper consideration of the limit behavior, the

contribution to the stress arising from void development at the fiber ends should be

taken into account.

The Effect of Fiber Fracture If the stress applied to the composite is increased, the

stress sustained by fibers will increase also. When the probability of survival of fibers

obeys the statistical relationship given by eq. (57), the effect of a raised stress will be to

fracture more fibers, with a preference for breaking long fibers. This will have the effect

of reducing the average fiber length L and therefore raising the strain rate at a given

applied stress as can be deduced from eq. (63). Therefore, the composite will no longer

have a simple power law behavior in steady state creep since the fiber fragment length

will depend on the largest stress which the composite material has previously

experienced. In this regard, the elastic transients will play an important role in

determining the fiber fragment length. However, the average fragment length in steady

state creep will generally be smaller than the average fragment length arising during

initial elastic response. Therefore, some guidance can be obtained from a model

designed to predict the steady state creep response only.
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For the Mileiko 18 model of composite creep leading to the steady state creep rate

for fixed fiber length given in eq. (63), a rudimentary fiber fragment length model gives

(McMeeking, unpublished work)

L = (m +l)[,7q-+¶;~k,, S Lg1(2n~l(y] 9(68)

subject to L being less than the specimen length. When a stress G is applied to the

composite material and steady state is allowed to develop, the average length for the

fiber fragments is predicted by eq. (68). This model is by no means precise, based as it is

on some approximations in the calculations as well as the notion that all fibers can be

treated as if they had the same length. However, the model conveys the important

notion that the fiber fragment length will fall as the applied stress is increased.

The fiber fragment average length during steady state creep can be substituted

into eq. (63) from which results

S= h (n, f, D/Lg m, S) B of+m+nm (69)

where h is a rather complicated function of its arguments and can readily be calculated.

A significant conclusion is that the creep index for the composite is no longer just n but

is n+m+nm. Thus a ceramic matrix material with a creep index for the matrix of 1 will

have composite creep index of 2m + 1. In the case of a fiber with a Weibull modulus of

m = 4, the composite creep index will be 9. Similar effects will be apparent in

composites with a nonlinearly creeping ceramic matrix, say with n = 2. It has been

observed that metal matrix composites with noncreeping reinforcements often have a

creep index which differs from that of the matrix5,22 and the effect is usually attributed

4H:MS26(September 1, 1992)10:25 AM/mef



31

to damage of the fibers or of the interface. It can be expected that ceramic matrix

composites will exhibit a similar behavior.

It should be noted that the model leading to eq. (69) is incomplete since the stress

required to cause the enlargement of void space at the fiber breaks is omitted from

consideration. At high strain rates this contribution to stress can be expected to

dominate other contributions. Therefore at high stress or strain, the creep behavior will

diverge from eq. (69) and perhaps exhibit the nth power dependence on stress as

controlled by the matrix. The creep rate at these high stresses can be expected to exceed

the creep rate of the matrix at the same applied stress since the void space at the fiber

ends is a form of damage.

Creep of an Initially Undamaged Composite The issue to be addressed in this section

is the long term behavior of a composite stressed above the threshold ayc given by

eq. (62) which means that the specimen will creep continuously. As in the immediately

preceding sections, elastic transient effects will be omitted from the model of long term

creep of the initially undamaged composite. No model exists as yet for the transient

behavior, but there is little doubt that the transient behavior is important. Many

composite materials in service at creep temperatures will probably always respond in

the transient stage since the time for that to die away will typically be rather long.

However, a quasi-steady state model, as before, will give some insight into the state

towards which the transients will be taking the material. However, the model

presented below is rather selective, since it includes some elastic effects and ignores

others. It is not known how deficient this feature of the model is. Perhaps the material

state will evolve rather rapidly towards the state predicted below and therefore the

model may have some merit.
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The specimen is composed of a mixture of matrix, unbroken fibers and broken

fibers. The volume fraction of intact fibers is given by eq. (57) with L = Ls, the specimen

length. To the neglect of transients, the macroscopic stress supported by these intact

fibers is given by eq. (60). The strain will now exceed the level of eq. (61) associated

with the ultimate strength of the fiber bundle. Therefore the stress supported by the

intact fibers will be less than ac which is the ultimate strength of the fiber bundle

without matrix. The applied stress exceeds Oc and the balance in excess of the amount

borne by the intact fibers will cause the composite material to creep.

The steady state result given in eq. (69) will be taken to express the creep

behavior controlled by the broken fibers. The volume fraction of broken fibers is

fb= exp[ L- (70)

and a material with this volume fraction of broken fibers creeping at a rate t will

support a stress

ab = [t/B h (n, fb, D/Lg, m, S)]I/P (71)

where

p = n + m + nm (72)

which comes directly from eq. (69). The total stress sustained by the composite material

is therefore

0 = fb Ob + Ou (73)
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where Ou is the contribution due to unbroken fibers. This leads to

= fb [/Bh(fb)] + fEf cexp-[_L(Ef )

(74)

which can be seen to be a rather nonlinear Kelvin-Voigt material in which the stress is

the sum of a viscous element and an elastic element both of which are nonlinear. As the

strain increases, the second term on the right hand side of eq. (74) (i.e. the term due to

the intact fibers) will diminish and become rather small when only a few unbroken

fibers are left. At the same time, fb will approach f and so the strain rate will approach

the steady state rate for a material in which all of the fibers are broken. However, as

long as a few fibers remain intact, the creep behavior will not precisely duplicate that

for the fully broken material. This transient effect will be compounded by the

redistribution of stress from the matrix to the fibers which will occur both after the first

application of load to the composite material and after each fracture of a fiber, both

effects having been omitted from this version of the model.

Creep of Materials with Strong Interfaces

It seems unlikely that long fiber ceramic matrix composites with strong bonds

will find application because of their low temperature brittleness. However, for

completeness, a model which applies to the creep of such materials can be stated. It is

that due to Kelly and Street 21 . It is possible also that the model applies to aligned

whisker reinforced composites since they may have strong bonds. In addition, the

model has a wide currency since it is believed to apply to weakly bonded composites as
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well. However, the Mileiko 18 model predicts a lower creep strength for weakly bonded

or unbonded composites and therefore is considered to apply in that case.

The Kelly and Street 21 model uses the notion that creep of the composite material

can be modelled by the behavior of a unit cell. Each unit cell contains one fiber plus

matrix around it so that the volume of the fiber divided by the volume of the unit cell

equals the fiber volume fraction of the composite material. The perimeter of the unit

cell is assumed to be deforming at a rate consistent with the macroscopic strain rate of

the composite material. (It can be observed at this stage that this notion is inconsistent

with the presence of transverse matrix cracks which would make it impossible to

sustain the longitudinal stress necessary to stretch the matrix. This is an additional

reason why the Kelly and Street 21 model is not likely to be applicable to unbonded

ceramic matrix materials which are likely to have matrix cracks.) Only steady state

creep of materials with aligned reinforcements which are shorter than the specimen is

considered. The unit cell is assumed to conserve volume. This means that material

originally adjacent to the reinforcement must flow around the fiber and finish up at its

end. This phenomenon has to occur when the end of the fiber or whisker is strongly

bonded to the matrix. For this reason, the Kelly and Street21 model is considered to be

relevant to materials with strong bonds.

Kelly and Street21 analyzed this model but their deductions were not consistent

with the mechanics. McMeeking2 3 has remedied this deficiency for nonlinear materials.

His results for n = 2 are relevant to composite materials with nonlinearly creeping

ceramic matrices which tend to have low creep indices. In that case, the steady state

creep rate is given by eq. (63) with n =2 and

g(2,f) = 8f2 8 +f __f2 +1f3)
8 (2 5 2 2 10 (75)
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which is invalid for f = 0. When f is close to zero a different form should be used which

accounts for the matrix stress so that the matrix creep law is recovered smoothly "'s the

volume fraction of fiber disappears. This result is developed below and is given in

eq. (77). Comparison of eq. (75) with eq. (64) for n = 2 will show that the model of Kelly

and Street 21 creeps more slowly than the Mileiko 18 law confirming that the Mileiko

model is the preferred one when it is kinematically admissible.

It is thought that at higher temperatures, the interface between the fiber and the

matrix becomes weak and sliding occurs according to the constitutive law given in

eq. (3). In that case, creep of a composite with a well bonded interface obeys eq. (63)

with n = 2 and 23

(2,f) =25. 8 f + 3f_ - f2 + 1 f3 ) + B76

gf(22 5 2 2 10 2DB (76)

This form for g is identical with that in eq. (75) when B = 0. Thus, sliding at the interface

increases the creep rate at a given stress. IfB/B D is very large, signifying a very weak

interface, then the interface term will dominate the matrix term in eq. (76). It should be

noted that there is a relative size effect, with large diameter fibers making sliding less

important.

At large strain rates, stretching of the matrix as it slides past the matrix will

contribute to the creep strength. Under those circumstances, the term g(2, f) in eq. (63)

should be replaced by23

-(2,f) 1[ig(2,f) + (1-f)
L 9(77)
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where, in eq. (77), g(2, f) is to be calculated according to eq. (76). Note that as g(2, f)

becomes large (i.e., the composite strain rate is large because either f is small or B is

large), the compositt strain rate will approach

S= [Cy/(1- f)] 2  (78)

which is the rate that would prevail if the fibers were replaced by long cylindrical holes.

Creep of Materials with a Linear Rheology The equivalent correction to the Kelly and

StrPt 2 1 model for cases where the matrix creep obeys a linear rheology (n = 1) was not

given .y McMeeking 23 . However, consideration of this case can be included in a model

with accounts for the ability of a well bonded interface between the fiber and the matrix

io sustain sliding according t%. eq. (3) and in which mass transport may cause the effect

described by eq. (4). In unpublished work, McMeeking has given the steady state creep

law for the composite material in these circumstances to be

T h(f)(L) + 1 - f]
B D (79)

where

1/h(f) = 9?-[41n(l/1f) - 3 + 4f - f 2 ]8fI

3 3B(If)2 + 48f D
fBD BD 3  

(80)

Recall that if sliding between the fiber a ad the matrix occurs readily, B will be large and

also rapid mass transport is associated with a large value of D.
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It is thought that as the temperature is increased, the relative importance of

sliding and mass transport is enhanced. Thus at low creep temperatures, B/B D and

D/B D3 would be small. Then only the first term on the right hand side of eq. (80) will

be important and when L/D is large, as required by this asymptotic model, the creep

strength will be high. As the temperature is increased, either B/B D or D/B D3 or both

will increase in magnitude. When they become large, h(f), will become small and the

creep strength of the composite will fall, as can be seen in eq. (79). However, if h(f)

becomes negligible, the steady state creep law for the composite will be approximately

t = B a/(1 - f). (81)

As ir, the case of the quadratic matrix rheology, the creep behavior when sliding

dominates (or as in this new case mass transport is significant) is the same as for a

material containing cylindrical holes instead of fibers even if the interface is nominally

well bonded. This behavior will occur when h(f) is much smaller than (D/L)2 so that

the relevant term containing h(f) in eq. (79) is negligible.

It should be noted that the creep behavior is affected in the way predicted by

eq. (79) and (80) whether interface sliding occurs readily or mass transport occurs

rapidly at the interface between the fiber and the matrix. It follows that rapid sliding by

itself is sufficient to diminish the creep strength of the composite material and long

range mass transport at the interface is not necessary. Note also that if the matrix does

not creep (i.e. B = 0) neither sliding nor mass transport will have any effect on creep and

the composite will be rigid. This feature arises because the matrix must deform when

any sliding or mass transport occurs at the interface.

An additional feature is a size effect in the creep law when sliding or mass

transport at the interface are significant enough to affect the composite behavior. A

small diameter fiber (i.e. small D) will tend to enhance the effect of sliding or mass
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transport on the creep rate of the composite and the composite will creep faster.

Similarly, a large diameter fiber will tend to suppress the effect of sliding or mass

transport and the creep strength of the composite will correspondingly be increased.

Similar effects tied to grain size are known to occur in the creep of ceramics and metals

controlled by mass transr art on the grain boundaries1 . Note that the mass transport

term in eq. (80) is much more sensitive to fiber diameter than the sliding term. The

cubic dependence on fiber diameter in the mass transport controlled term will cause it

to disappear rapidly as D is increased. However, if both D and B are substantial, the

creep strength of a composite will not be improved substantially by increase of fiber

diameter until both the effects of sliding and mass transport are suppressed. It seems

likely that in practice this will mean that mass transport will be relatively easy to

eliminate as a contributor to rapid creep strain of the composite by increase of the fiber

diameter, whereas the effect of sliding at a given temperature will be more persistent.

Furthermore, there is also an interplay with volume fraction, with the importance of

interface sliding being greater at low volume fractions of fibers and mass transport

being more significant at higher volume fractions.

Discussion

As previously noted, this chapter has been concerned mainly with those models

for the creep of ceramic matrix composite materials which feature some novelty which

cannot be represented simply by taking models for the linear elastic properties of a

composite and, through transformation, turning the model into a linear viscoelastic one.

If this were done, the coverage of models would be much more comprehensive since

elastic models for composites abound. Instead, it was decided to concentrate mainly on

phenomena which cannot be treated in this manner. However, it was necessary to

introduce a few models for materials with linear matrices which could have been

4H:MS26(September 1, 1992)10:25 AM/neef



39

developed by the transformation route. Otherwise, the discussion of some novel

aspects such as fiber brittle failure or the comparison of nonlinear materials with linear

ones would have been incomprehensible. To summarize those models which could

have been introduced by the transformation route, it can be stated that the inverse of the

composite linear elastic modulus can be used to represent a linear steady state creep

coefficient when the kinematics are switched from strain to strain rate in the relevant

model.

No attempt has been made to discuss in a comprehensive manner models which

are based on finite element calculations or other numerical analyses. Only some results

of Schmauder and McMeeking10 for transverse creep of power law materials were

discussed. The main reason that such analyses were in general omitted is that they tend

to be in the literature for a small number of specific problems and little has been done to

provide comprehensive results for the range of parameters which would be

technologically interesting - i.e. volume fractions of reinforcements from zero to 60%,

reinforcement aspect ratios from 1 to 106, etc.. Attention was restricted in this chapter to

cases where comprehensive results could be stated. In almost all cases, this means that

only approximate models were available for use. Furthermore, numerical analyses for

creep in the literature tend to be for metal matrix composites and so use creep indices

which are rather high for ceramic matrices. Indeed, this latter fault applies to the finite

element calculations so far performed by Schmauder and McMeeking10 even though

there was an attempt to be comprehensive. Those finite element results which are

available in the literature such as the work by Dragone and Nix24 are very valuable and

provide accurate results for a number of specific cases against which the more

approximate models discussed in this chapter can be checked. A limited amount of this

checking for a single model has been done by McMeeking 23 in comparison with the

Dragone and Nix24 calculations. The results show that the approximate model is

reasonably accurate. However, more extensive checking of the approximate models is
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required and to do this in many cases it will be necessary to create the finite element

analyses.

Also omitted from this chapter was any attempt to compare the models with

experiments. This would require a lengthy chapter by itself and some comparisons are

given elsewhere in this book. In addition, limited data are available for such

comparisons in general. For metals, there are some successful comparisons 5 and some

unsuccessful ones22. It seems that when there is good knowledge of the material

properties and the operating mechanisms, the right model can be chosen, but lack of

such knowledge makes it virtually impossible to identify which features must be

present in the model. Thus, multidisciplinary work is necessary to understand the

microstructure, to identify the mechanisms and to select and develop the appropriate

model. An example of such an effort, although for the closely related subject of the

plastic yielding of a metal matrix composite, is the work of Evans, Hutchinson and

McMeeking2 5 , where careful control of the metallurgy and the experiments was used to

confirm the validity of the models.
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Figure Captions

Fig. 1 A uniaxially reinforced fiber composite.

Fig. 2 Threshold for long term creep of a uniaxially reinforced composite as a function

of Weibull modulus for the fiber strength distribution.
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ABSTRACT

The creep properties and microstructures of y -TiAl reinforced with continuous

A120 3 fibers have been investigated. Novel fiber coating concepts have been used to

create "weak" fiber/matrix interfaces that allow the fibers to impart enhanced creep and

fracture resistance, simultaneously. Several major facets of the creep behavior were

identified. Under conditions of limited fiber fracture, creep-resistant sapphire fibers

were found to limit longitudinal creep to a short transient strain, consistent with model

predictions. At the same time, the interlaminar shear creep properties were found to be

insensitive to fiber reinforcement, again consistent with predictions. It was also

demonstrated that the "weak" interfaces were maintained after creep and resulted in

significant levels of toughening.
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1. INTRODUCTION

Titanium-aluminides have potential as high-temperature structural materials for

aerospace applications. Compared to Ti-based alloys, these materials have superior

elastic moduli and high-temperature strength, as well as improved oxidation and creep

resistance.1, 2 These factors also give Py-TiAl an advantage over (x2-Ti3AI for high

temperature applications. Two key problems with y -TiAI are its low toughness and

ductility below 700'C, as well as inadequate creep strength for a number of proposed

applications. There have been several successful demonstrations of improved

toughness 3-6 but more limited assessment of the approaches for enhancing creep

strength. Attempts to improve the creep resistance by solid-solution and particulate

strengthening have only had limited success.7"9 A potentially more powerful approach

involves reinforcing with unidirectional continuous fibers. Such fibers are also capable

of enhancing strength and toughness if the appropriate fiber coating is used.i n

An appreciable literature exists concerning models of the effect of fibers on the

longitudinal1 1-17 and transverse 18 creep characteristics of unidirectional composites.

However, there have been few experimental studies on systems having practical utility

at elevated temperatures. The principal intent of this study is to quantify the effect of

fibers, and fiber/matrix interface characteristics, on the longitudinal creep of 7-TiAI,

and to provide a comparison with models.

In one lixdt, the models suggest that composites with continuous elastic fibers

demonstrate transient creep, with a creep strain limited by the elastic deformation of the

fibers. 12 When the fibers also creep, the composite will usually be expected to exhibit

steady-state behavior, following an initial transient, subject to a 'rule-of-mixtures' creep

rate.12 However, these expectations are modified by fiber failures, 13,17 which initiate

tertiary creep and may lead to creep brittleness. In some cases, the presence of a "weak"

fiber/matrix interface may further obviate creep strength by allowing debonding and
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relative sliding between fiber and matrix, either at free surfaces or at prematurely failed

fibers.19

These concepts may be assessed by using two types of alumirLa fiber

reinforcements. (i) Sapphire fibers, which are expected to be essentially elastic up to

- 1600 C, when loaded parallel to the c-axis,20 are used to evaluate the elastic fiber

concept. Now) fiber coating procedures are used to explore the effect of weak

r.ber/matrix interlaces on the composite creep rate.10,21 (ii) Fibers consisting of fine

grained polycrystalline A12 03, which should creep noticeably at -1000 "C22, provide

information about composite behavior in the piepence of creeping fibers.

2. EXPERIMENTAL

2.1 Materials and Processing

The matrix used in the present study is a y -TiAl alloy (Ti-48 Al-2.5 Nb-

0.3 Ta at %), supplied by Pratt and Whitney as rapidly solidified powder having an

average particle diameter of - 120 pan. The polycrystalline A120 3 fibers, produced by a

sol-gel process, supplied by 3M, had a diameter of - 15 pum and a submicron grain size.

The sapphire reinforcements, produced by the EFG (edge-defined film-fed growth)

process at Saphikon, Inc.¶, had a nominal c-axis orientation and a diameter of - 130 gtm.

Samples with strong interfaces resulted when no coating was applied to the fibers.

Composites with "weak" fiber/matrix interfaces were obtained when the fibers were

suitably coated.2 1 For the present specimens, the -apphire fibers were coated with

colloidal graphite. Th ,, to p.event dissolution of the graphite into the TiAl matrix, the

fibers were provided V wh an outer coating of Ai 2O 3 Densification of the A120 3 coating

was achieved during a 13001C vacuum heat treatment, "rior to composite consolidation.

¶ Milford, NH.
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Composites with fiber coatings were produced by mechanically blending the fibers

and the TiAl powders, and then densifying by hot isostatic pressing (HIP) at 276 MPa

and 1100°C for 2 h. For the sapphire fiber composites, this was achieved using a slurry

prepared with TiAI powders and deionized water, and by utilising the rigidity of the

fibers to facilitate the mixing piocess. To remove the bulk of the water from the slurry,

the can was first heated to 60°C in air for 48 h. To remove residual moisture, the cans

were evacuated at 350 °C for 1.5 h, and then sealed by crimping and welding. The

composites containing polycrystalline fibers were manually fabricated by first stacking

equal-length bundles into Ti cans (sealed at one end) having inner diameter 12 mm and

length 55 mm. Dry TiA1 powder was mixed with the fibers in the can. Mechanical

agitation of the can during mixing facilitated powder dispersion. Residual moisture was

again removed under vacuum. Unreinforced TiAI was also produced by HIPing, in

order to provide a reference against which the properties of the composite could be

compared. Fiber volume fractions, f, = 0.15 - 0.25, were achieved for the sapphire fiber

composite after consolidation, (Fig. 1). For the polycrystalline fiber composite, a fiber

volume fraction f = 0.07 was measured after HI-'ing. Higher fiber volume fractions

were precluded in this material by the occurrence of uneven fiber distributions in the

densified composite.

The composites reinforced with polycrystalline A12 0 3 fibers were shaped into test

specimens by electro-discharge machining. Rectangular test bars of the sapphire-

reinforced material were produced by a cutting and surface grinding process, using

diamond impregnated wheels. These samples were ground to a 400 grit surface finish.

Beams with reduced central sections were also utilised, (Fig. 2). These specimens were

machined by using a high speed diamond core drill, with a 200 grit size. In the

composites with sapphire fibers, brittle fiber fractures were observed occasionally,

attributed to machining damage. In one case, when the tensile surface was profiled with

the 200 grit diamond core drill (rather than the 400 grit wheel used on rectangular
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beams), substantial fiber fracture occurred, consistent with the deeper scoring resulting

from the larger grit size.

2.2 Creep Measurements

Creep tests were performed in argon (- 0.1 MPa) using a hydraulic testing

machine with a 2200"C temperature capability. The composites were tested in four-

point flexure, with an inner/outer span ratio of 1/2. Initial tests were conducted on

rectangular beams, with cross-section 3x3.5mm. However, large levels of shear

deformation in the outer span led to discontinuities in the curvature of the beam at the

inner loading points, resulting in premature fiber fracture. Enhancing the thickness of

the outer-span (Fig. 2) ameliorated this problem, by reducing the outer span shear

stresses.

Measurements of the axial creep properties were carried out by using a device

which directly and continuously evaluated the (constant) curvature over the inner span

(which experiences a constant moment) by measurement of the displacement A (Fig. 3).

The maximum tensile creep strain S is then given rigorously by,24

e = hA/(A2 +s 2) (1)

where h is the beam thickness and s the span (Fig. 3).The device allows strain

measurements accurate to within T-0.01%, and a resolution of T).0005%. Subsequent

numerical treatment of the data then yields the corresponding strain rate behavior. The

corresponding shear strain rate "' in the outer span, when the reinforcing fibers are

elastic (Fig. 4), isc

SEqn. 2 is applied to the shear deformation of both rectangular beams, as well as the profiled beams
(Fig. 2). For the latter, the variation in height of the beam in the transition region outside the innmr
loading point may lead to a small additional error.
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S= 2Ap/(L-t) (2)

where Ap is the load-point displacement-rate, L is the outer span and I the inner span.

The stresses that develop in the composite relate to the applied moment through

the longitudinal constitutive properties of the composite. Determining precise values for

the axial and shear stresses during flexural creep is quite straightforward when the

fibers do not creep, and the stresses are substantially below the fiber bundle strength.

The procedures are more involved when the fibers are subject to creep, as summarised

in the Appendices.

Tests on the TiAl matrix were also conducted in uniaxial compression. These tests

were performed in argon, on samples measuring approximately 6 mm in diameter and

12 mm long.

2.3 Fracture Resistance

Fracture resistance measurements were performed, following creep, by using a

chevron-notch, three-point bend technique. Testing was conducted in a hydraulic

testing machine, at room temperature, at a cross-head displacement rate of - 100 Pm/s.

A stiff loading frame guaranteed stable crack propagation, following initial pop-in.

Fiber push-out tests have also been conducted, before and after creep testing, in order to

evaluate the interfacial sliding stress, -z, as described elsewhere. 21,23

2.4 Characterization

Various microstructural and microchemical characteristics of the composites have

been established, by using conventional and analytical transmission electron

microscopy (TEM). These studies were conducted in a JEOL 2000 FX instrument,
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equipped with a LINK eXL energy dispersive X-ray spectroscopy (EDS) system with a

high take-off angle detector. Indexing of electron diffraction patterns was conducted

using Desktop Microscopist Software. Thin specimens suitable for TEM were prepared

both by mechanical dimpling followed by either ion beam thinning (5kV/13") or twin

jet polishing. The latter was carried out in a Fishione Model 110/130 by using 4%

Sulfuric acid/Methanol solution at -15"C and 95 mA. Specimens were also examined by

scanning electron microscopy (SEM), before and after mechanical testing. These studies

were conducted with a JEOL SM840 equipped with a Tracor Northern EDS system.

3. MICROSTRUCTURES

3.1 As-Processed

Microstructural analysis of the TiAI/A120 3 composites conducted by using TEM

revealed a y -TiAl matrix with a - 5 pm grain size, insensitive to both the volume

fraction and type of reinforcement. Intragranular carbides (resulting from carbon

contamination during the T'iA1 powder atomization process) were identified by selected

area diffraction (SAD), as Ti2AIC. These were present in small quantities (volume

fraction, f < 0.02), but with a wide size distribution (ranging from < 0.1 to - 1 pm)

(Fig. 5). There were no indications of a 2-Ti3AI. The grain size of the polycrystalline

A120 3 fibers was - 0.2 pm (Fig. 6a). The sapphire fibers were largely devoid of both

grain boundaries and dislocations (Fig. 6b). In the absence of coatings, bonding between

the matrix and the fibers appeared intimate, with no evidence of reaction zones

(Fig. 6a, b). However, limited interdiffusion occurred. In the polycrystalline fibers, Ti

was evident to a depth of - 0.8 ým. The extent of the interdiffusion zone was

substantially less for the sapphire fibers (- 0.2 prn).
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In the composites incorporating fiber coatings, a continuous graphitic structure

was evident, with the layers displaying a wavy morphology parallel to the surface of

the fibers. This arrangement, also evident after creep (Fig. 7b), provided a "weak"

interface and low interfacial sliding stresses.10,21 Surrounding the graphite was a

continuous, fine grained (= 0.1 ýin) A120 3 coating, 0.2 - 5 jim thick, again, also evident

after creep (Fig. 7a), containing a small amount of residual porosity. No interface

reactions were found. Nor was there evidence of significant levels of interdiffusion

between the fiber, m -trix and coating.

3.2 After Creep

The polycrystalline A120 3 coatings on the fibers were found to be effective in

preventing the migration of the graphite into the TiAI during creep. This protection is

evident both from the retention of the 200-500 rum graphite layer (even after more than

50 h at 982*C (1800TF)) and the spatial uniformity of the matrix carbide concentration in

the TiAl (Fig. 7a).

However, following creep, several changes in microstructure were evident. Locally

enhanced matrix creep at the fiber breaks in the sapphire fibers produced by machining

resulted in separation of the fiber ends, (Fig. 8b). In the matrix adjacent to a fiber failure,

extensive creep damage was often evident. Such damage provides a mechanism for

creep rupture in the composite. In composites containing polycrystalline fibers, fiber

fractures occurred at regular spacings after a creep strain of - 2% (Fig. 8a). The

maximum value of the ratio of crack spacing, 1, to crack radius, R, was 1/R ~ 10. This

spacing occurred dose to the tensile surface. The maximum fiber cracking depth was

- h/3 from the tensile surface. No fiber fractures were found on the compression side.

Cracking %ppeared to be caused by creep damage coalescence within the fibers (Fig. 9),

similar to that observed for other aluminas.25
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Significant levels of dislocation activity were observed in the y -TiAl, with some

dislocation pinning evident at the intragranular carbides (Fig. 10). Few dislocations

were evident in either the polycrystalline A120 3 or the sapphire fibers.

4. CREEP STRENGTHS

4.1 Axial Creep

Measurements of axial creep at 982°C (18007F) revealed substantial differences

between the various materials (Figs. 11,14). i) The matrix-only material exhibited

steady-state deformation after a short transient, (Fig. 11), with a power-law exponent,

n = 2.6 ( Fig. 12). ii) The material with the polycrystalline fibers exhibited primary and

steady-state creep, (Fig. 11), with a creep-rate somewhat less than that for the matrix, (at

the same nominal stress). iii) The composites with sapphire fibers exhibited transient

creep (creep-rate diminishing with strain) and a total creep strain - 0.15%, (Figs. 11,13).

Unloading at the end of the creep test, while maintaining the temperature, resulted in

reverse creep. These behaviors were similar for both the coated and uncoated fibers, in

the absence of significant fiber fracture. However, when premature fiber fracture

occurred as a result of machining damage, an acceleration in creep was evident,

(Fig. 14).

The axial creep-rate of a composite containing intact continuous, elastic fibers, is

predicted to be transient 12 andwhen the matrix experiences power law creep

(equation A2), is given by,

t = [1 - (f1Ef )E] (3)
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where Efis Young's modulus for the fiber, m is the matrix creep-rate at the same

applied stress and aX is a coefficient that depends on f, Ej/Em and n, given by12

a= [ Ea(l-f (1f) 1-f)-ncz Eff +--m(I -_ f). (4)

For the present composites, (f = 0.15-0.25, n = 2.6, Eu/Em = 2.8), a = 1.1. Integration of

equation (3) then gives the strain history,

= - ( C C - F-0[ + ( 1 -_ C O/ £ C )n -1 { (n - Da t m } 1 -1 /(n -1 )

where cc is the strain at which creep stops, given by

S= a/fE1  (6)

A comparison with these predictions of the creep rates measured on the

composites containing coated sapphire fibers (Fig. 13), indicates a slighter higher than

expected creep rate after the first few hours but good agreement, within the accuracy of

the data, after about 15 h. In particular, the limiting creep strain appears well

represented by equation (6). The discrepancy during the early stages is probably caused

by transient stress redistribution effects within the beam, not accounted for in

equation (5). Similar agreement obtains from the initial creep of the composite with

uncoated fibers, prior to fiber failure. This result is of significance because it emphasises

that the presence of a "weak" fiber/matrix interface does not degrade the axial creep

properties of the composite.

CHWI-1 12/92 11



When polycrystalline fiber reinforcements are used, the lower creep strengths, as

well as the attainment of a steady-state deformation, involve both fiber creep and

fragmentation of the fibers. The occurrence of creep in the fibers is consistent with the

extremely fine grain size22 (< 200nm). However, there is insufficient information to

compare explicitly with models.

4.2 Interlaminar Creep

In the composites reinforced with sapphire fibers, steady-state interlaminar shear

creep is found to occur in the outer span, after a brief initial transient. The shear

deformation of the composite may be compared with that for the unreinforced matrix

by using the equivalent stress and strain as comparators (Appendix II). This comparison

demonstrates that the shear creep rate of the composite and of the unreinforced matrix

are similar (Fig. 12). Consequently, the reinforcing fibers are found to have little effect

on the shear creep response, consistent with theoretical predictions (Appendix MI,

Fig. C2).

5. FRACTURE RESISTANCE

Fracture resistance measurements conducted on the material with coated sapphire

fibers, after creep (Fig. 15), were initially characterised by pop-in, due to unstable crack

propagation from the notch. However, bridging fibers were found to cause crack arrest,

with subsequent pull-out, (Fig. 16b), resulting in significant enhancement of the fracture

resistance. The pull-out contribution to the work-of-rupture is estimated from the area

under the !ail of the load-displacement curve as, AIp - 2.1 kJri- 2. The fiber pull-out

lengths ranged between about 20 - 225 pm, with an average value, h - 105 •rm. In

contrast, the composite with uncoated sapphire fibers exhibited unstable crack growth,

with no pull-out (Fig. 16a). The frictional sliding stress, characterizing pull-out of the

CHW11-12/92 12



coated sapphire fibers, obtained using fiber push-out tests21 was T = 40-50 MPa. The

toughening, Arp, caused by fiber pull-out is predicted to be26

AFp = Ifh2 / R (7)

where R is the fiber radius, and h = R 2 Xphi2 / f, with n being the number of fibers

per unit area. Using the parameters summarised in Table I, the magnitude predicted by

equation (7) is found to be -40% lower than the toughening value determined

experimentally. This discrepancy may be partly due to the bending stresses that occur

in the fibers bridging the crack during pull-out, resulting in additional fiber failure and,

thus, to an underestimation of the true average pull-out length. In addition, bending

may lead to an increase in the effective sliding stress by causing additional compressive

forces normal to the fiber/matrix interface.

6. CONCLUSIONS

The present study has demonstrated for the first time that continuous ceramic fibers

can substantially enhance the longitudinal creep properties of intermetallic matrices, in

the presence of weak fiber/matrix interfaces, provided that the fibers are strong and

resistant to both creep and creep rupture. In addition, the comparatively high fracture

resistance of y -TiAl reinforced with coated sapphire fibers critically demonstrates the

feasibility of using continuous fiber reinforcement with weak fiber/matrix interfaces to

simultaneously achieve high uniaxial creep and fracture resistance.

The importance of fiber coatings for both fracture resistance and creep strength has

been vividly demonstrated. Fiber pull-out and toughening have been demonstrated

when coatings are used. It is also shown that double coating techniques can be used to

protect debond coatings during creep.

CHWI1-12/92 13



The creep properties under shear loading were found to be insensitive to

unidirectional fiber reinforcement, in accordance with predictions, indicating the need

for multidirectional reinforcement under more complex loading conditions.
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APPENDIX I

Axial Stress Redistribution in a Creeping Beam

For a beam subject to elastic bending, the maximum tensile and compressive

stresses, 0 e, are

Oe = (3/2) {P(L - e)/bh 2} (Al)

where L and I are the length of the outer span and inner span, respectively, P the load

and b the beam width. When the entire body is subject to power law, steady-state creep,

with the strain-rate, i characterized by,

e = (0 / a()

where YOo is a reference stress, k a reference 'crain-rate and n the power law exponent,
A

the maximum stress a in the flexural specimen is27

e/a. = (2n + 1)/3n WA3)

The corresponding stress distribution is

a(y) = (2n+1'2y'•"
1

3n k-n -h) (A4)

where y is the distance from the neutral axis

For matrices reinforced by creeping fibers account must be taken of the

redistribution in moment from the matrix to the fibers. This results in a stress

distibution that is a function of both the fiber volume fraction and the applied load.24

CHW1121292 15



For the TiA1/polycrystalline A120 3 fiber composite, the fiber volume fraction is low and

the fibers appear to creep with rates similar to the matrix. In this limiting case,

equation (A3) provides a sufficiently accurate representation of the composite stress

distribution. Another limiting case occurs when the fibers are elastic, and not subject to

significant fragmentation. Then, the composite stress during creep is given by

equation (Al). These two well known bounds are used in this study to gain

understanding of the influence of the fibers on creep behavior.

CHWI-12/92 16



An interesting situation arises when the composite is reinforced with elastic fibers.

Then, following an initial transient, all axial load is carried by the fibers, resulting in a

linear stress distribution across the beam. Consequently the shear stress distribution is

the same as that for the elastic case.

To compare the composite shear behavior with the matrix creep behavior obtained

in flexure, the stresses and strains are expressed in terms of the equivalent values (Y' and

strains E', by using

CF.)2 +(033 _ 0122) + (ayll _ C3)2 1(B/2
2' 2 +,+ +6(o C+;2+o) j

and

2 )[(ell E22 )2 + (E33 _- '(+ 2 +6(E + E+ 2,•) (B5)

where akk and EU refer to the normal stresses and strains, respectively. In shear, a' =

T and c' = "/', whereas, in flexure, a' = a and e = 2E/3.

CHWII-12/92 18



APPENDIX II

Shear Stress Redistribution in a Creeping Beam

The maximum shear stress r in four-point flexure occurs at the mid-beam height in

the outer-span region. For a monolithic elastic beam in four-point flexure, this stress is 28

"T = 3P/4bh (B1)

where P is the applied load, and b a:.d h are the beam width and height, respectively.

When creep occurs a - "rding to equation (A2) there is a redistribution in shear

stress across the height of the beam. The magnitude of the shear stress can be

determined from equilibrium, by integrating the imbalance in axial stress, Aa, across an

element of width dx, over the height of the beam,

_fy Aody

dx (B2)

For non-linear creep, Aa is found from the axial stress distribution given by

equation (A4). The maximum shear stress normalised by the corresponding elastic

stress, ze, is then

'Te 3n + 3) (B3)

This result shows that non-linear creep results in a magnification of the maximum shear

stresses.

CHWII-12192 17



.tc/tm = •(O-n)In _ (C4)

The results of the numerical integration of equation (C4) for different values of the

matrix creep exponent, n, (Fig. C2) indicate that, for materials characterised by a h.•h

creep exponents, the fibers have little effect on the creep behavior when the volume

fraction, f 5 0.4. These predictions are consistent with the shear creep behavior of the

TiAl/sapphire composite (f = 0.15 - 0.25 and n = 2.6), Fig. (C2).
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FIGURE CAPTIONS

Fig. 1. Scanning electron micrographs of the y -TiA1/sapphire composite: transverse

section.

Fig. 2. Modified four-point flexure sample, with reduced center section to minimise

f~ber damage.

Fig. 3. Schematic of the method used to measure bending deflections during creep.

Fig. 4. Schematic of interlaminar shear creep during flexure.

Fig. 5. Transmission electron micrograph of the matrix in as-processed y-TiAI,

Indicating the Ti2AIC precipitates.

Fig. 6. TEM micrograph of the fiber (W/matrix (m) interface region (shown arrowed)
in 7-TiAl reinforced with a) polycrystalline A120 3 b) sapphire.

Fig. 7. TEM micrograph of the fiber/matrix interface region in y-TiAl reinforced with

coated sapphire fibers after creep at 9821C (1800SF) for 50 h, a) overview, b)
detail of region outlined in (a). Diffraction pattern shows the TiAl [0111 zone
axis, recorded next to the interface. (M, matrix: S, saphire fiber: A, A120 3

coating: C, carbon coating)

Fig. 8. TEM micrographs of y-TiAl matrices with A]20 3 fibers a) multiple cracking in
polycrystalline fibers, b) fracture in sapphire fiber (arrowed).

Fig. 9. Evidence for creep crack growth in polycrystalline A1203 fibers.

Fig. 10. Transmission electron micrographs of unreinforced y-TiAl after creep,

a) bright-field and b) weak beam dark-field.

Fig. 11. Comparison of the creep behavior between matrix and composites.

Fig. 12. Steady-state composite creep under interlaminar loading in TiA1/sapphire at
982"C (1800'F) plotted as equivalent stresses and strain-rates. Also shown are

compression (c) and flexural (f) creep rates for the matrix.
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Fig. 13. Comparison of TiA1/sapphire creep data with model at 982"C (1800TF) and a
nominal applied stress of 75 MPa.

Fig, 14. Transition to 'steady-state' creep after onset of fiber fracture in TiAl/sapphire,

containing uncoated damaged fibers.

Fig. 15. Work-of-fracture data for TiAl/sapphire after creep.

Fig. 16. a) No fiber pull-out in TiAI/sapphire for strongly bonded interfaces.
b) Weakened interfaces result in substantial levels of pull-out.

Fig. C1. Unit-cell model for the interlaminar shear creep behavior of continuous fiber
composites.

Fig. C2. Comparison of shear creep behavior of TiA1/sapphire with model at 982"C
(1800'F) for effective stresses of 7-12 MPa.
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Table I

Constitutional Properties For TiAL/Sapphire

Pull-Out Length, h (jim) 105

Fiber Radius, R (gm) 65

Fiber Volume Fraction, f 0.15

Sliding Stress T (MPa) 40-50
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THE MECHANICAL PROPERTIES OF A] ALLOYS
REINFORCED WITH CONTINUOUS AI-O.. FIBERS

NI.-S. W,' J. YANG', H. C. C'AW' A. G. EVANS' and R. NIE1IRABI %N-
Materials Department. Colleir of Enginceeinv. L in~erss of California. Santa Barbara, CA 931106' andi

'CarnegteC Mellon Uwxcrsiix. Pittsburgh. P.\ 15211. C' S.A
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Abstract-The mechanical properties of aluminum matirix composite,, unidirectionalk% reinforced witth
Al 0z fibers have been measured and characterized in longitudinal and transversc: tension. as "ell as ir
shear. The flow strengths in transverse tension and shear are found to exceed those of the matrices.
although the ductilities are lower The strengthening is generalk% consistent with ithedeselopmnent of plastic
constraint in the matrix around well-bonded fibers. subiect to tnc tit anti properties of the matrix being
known from independent measurements The propertics iti longitudinal tension are found ito inmoise
interactions between fibers.~ such that fiber bundle strengths are not achieved. esen when a IoN4 strength,
pure Al matnx is used. Instead, the strengths arc consistent with a crack growth controlled failure
mechanism, wherein the strength is governed bx the resistance of the material to crack extension from
failed fibers.

Resumi--l-s propri~tis mecaniques de compositions a matrice d'aluminium renforces unidirecticnnelle-
ment avec des fibres de A1,0, ont ete mesur~es et caracterisees, en tractions longitudinale et transs'ersalc.
ainsi qu'en cisaillentent. Les resistances a l'ecoulement en traction transsersale et en cisaillement sont
superitures a celles de la matrice. bien que Its ductilites soient moindres. En general. It durcissernent est
consistant avee: le detveloppemrent d'une contrainte plastique dlans fa mai-ice autour des fibres bien liecs.
pourvu que Its proprietes in situ de la matrie scient deterrninees a partir de mesures independantes. Les
propri~tis en traction longitudinafe mettent en jeu des interactions enire Its fibres. de sorte que V'on
n~atteint pas les resistances d'un faisceau du fibres. me~me quand on utilise une matnee d'aluminium PUT
A faible resistance micaniqut. Par contre. Its resistances m~caniques sont compatibles avee un mecanisme
de rupture contr6le par la croissance des fissures, si bien que la resistance est gouvernee par la resistance
du matiriau au developpemnent des fissures a partir des fibres endommagees.

Zusammuenfassng-Die mechantischen Eigenschafteni von Verbundwerkstoffen mit Al-Matrix, die
geriebtet verstirkt sind mit A], 0,-Fasern. werden germesen und in longitudinalen und transversalen
Zugversuche-n und in Scherung charaktenisiert. Die Flielffestigkeit in transversalem Zug und in Scherung
uiberschreitet die der Matrix. wenin auch die Dukttlitat gsringer istt Dte Hartung ist im aligemetnen
verteaglich mit der Entwicklung von plastischen ZwangsvorgAngen in der Matnix urn die gut gebundenen
Fasern herum. die den von unabhangigen Messungen her bekannten Eigenschaften der Matrix unterwor-
fen sind. Die Eigenschaften bet longitudinalem Zug umfassen Wechseiwirkungen 7wischen den Fasern in
der Art. dali die Festigkeit von FaserbUndeln nicht erreichi wird. auch wenin tine Matrix. wit rcuses Al.
mit niedriger Festiglteit benutzt wird. Stattdessen sind die Festigkeiten verseaglich mit cinein dutch
Rit~wachstumn gesituersen Bruchmechanismus. wobei die Festigkeit vomn Widerstand des Materials
gegenuber der Riliausbreitung von gebrochenen Fasten aus bestimmit wied

1. INTRODUCTION Investigation of Ti matrix coml. ;ites with
coated SiC fibers have indicated the advantages

A basic understanding of the longitudinal. transverse and disadvantiges of -weak "interfaces 15, 7, 10-1ll.
and shear properties of fiber- reinforced metal matrix The longitud.,nal tensile properties approach those
composites requires that these properties be expressed expected fromi a rule-of -"ixiures. Furthermore,
in terms of the constituent and interface properties the stratn to failure is essentially the failure strain
11-71 Such relationships are the basis for design- of the fibers Such behavior arises because
ing and producing components with well-defined debonding and sliding at the interface occurs in
structural charactenstics. A central issue concerns response to fiber fractures which eliminates stress
the fiber.matrix interface, which may be classified concentrations in neighboring fibers, However, the
as either "strong" or "weak" [5]. The former is transtverse tensile properties are diminished by
exemplified by Al alloys reinforced with A120O, (8. 9]. having a "weak" interface, such that the ultimate
while the latter is typified by Ti alloys reinforced strength is appreciably less than the Matrax Yield
with coated SiC fibers 17, 10-111. The present study strength. The transverse tensile modulus is also
is concerned with the systems having -strong- reduced at stresses above that at which the interface
interfaces, separates.
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composite to the propertic- of the tiber,,. the mmtri\ Pi2 P:2

and the Interface. For this purpose C composite, con- -

sisting of AlO, fibers in Al allo.% mitrix hai'. been
produced and tested. An understanding of the bhha\-
tor of such composites is dominated bk three factorSs
ýi) The in situ flow strength of the matrix. (itw the guage'- (a)
in situ fiber strength and iiii) the strain conventration
transmitted from a failed tiber to the neighboring

fibers.

2. MATERIALS P/2 P/2

Appreciable prior expenence with Al matrix
composites produced by squeeze casting has been z Fiber
used to identil\ systems that have supposedlt %&ell-
characterized matrix and fiber properties [8. 14-161
A solution strengthened matrix of Al 4 wi % Mg has
the attributes that composites can be produced bN x (b)

squeeze casting without extensive Mg segregation to
the interface [8]. Thi leads to a matrix with a Y

relatively well-deft . strength and good duct-
ilbty. To provide contrasts in matrix properties, pure
Al and a 2124 alloy were also used. The fibers used
were FP-AIO., provided by DuPont.

Preliminary composite processing studies revealed
that squeeze casting resulted in an inhomogeneous A203(c)
fiber distribution [Fig. 1(a)]. Superior homogeneity
was achieved by first drawing the fibers through a .
slurry containing fine particulates of either ALIO, or At alloy

SiC. The attached particulates inhibit fiber contact
during subsequent processing and allow materials to Fig 2. Specimens used for shear testing (dimensions are in
be processed with superior spatial homogeneity and mm). (a) A notched beam under asymmetric 4-point flexure.bb) angles used to define fiber orientation and (et a diffusion
having fiber volume fractions between 0.3 and 0.5 bonded shear specimen
[Fig. I(b)]. Most of the mechanical property investi-
gations have been on materials processed in this
manner. The two materials subject to comprehensive gauge was used to measure the strain in the gauge
testing have the microstructural and constituent section.
characteristics summarized in Table 1. The shear properties of the composites are assessed

by using a notch shear specimen adapted from the
3. TEST PROCEDURES I osipescu test 117, 18]. This test concentrates the shear

deformation in the reduced section between the

Mechanical measurements have been made in ten- notches and allows approximate determination of the
sion. flexure and shear. Comprehensive studies were shear flow strength from the load and the cross
conducted in flexure on beams with faces carefully section. The dimensions of the specimen and loading
polished to minimize surface damage from machin- configuration are given in Fig. 2(a). A strain gauge
ing. In these studies, strain-gauges were bonded to the (gauge length. 0.6 mim) was attached to the reduced
tensile and compressive faces, as needed to measure section. with an angle of 45 to the loading direction.
both the longitudinal and transverse strains. The Tests have been conducted with fibers aligned both
tension tests were performed on specimens with parallel and normal to the notches, herein referred
a reduced area in the gauge section produced by to as transverse shear (it = 90 , = 0 or 90 ) and
diamond machining followed by polishing. A strain longitudinal shear (Q = 0 . 0 = 90 j. respectivel%. as

defined in Fig. 2(b).
"Table I Propernes of consunruenit Information regarding the shear strength of the Al

Filters matrx has been obtained by devising the shear test
E,-=34OGPa depicted in Fig. 2tc). In order to perform this test.m= 6.5 thin strips of the alloy used to prepare the composite
S, = 1 7 GN for 1_.•0 025 mMatrices matrix were soltd-state diffusion bonded between

Ai4% Mg E, - 70GPa plates of high-purity sintered A12O,. This resulted in
At E, = 70GPa a body consisting of a thin layer of matrix ( - 50 pm)
Al (21241 t, = 70GPa between AIO, similar in characteristics to the
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matrix between the fibers in the composite. The
bonded system was tested in shear with the shear pared %knh the pure Al matrix These are significant
displacement monitored using a displacement gauge effects of fiber volume fraction.
located adjacent to the bond plane. The two matrices gave vert different characteristics

Observations of the materials have been made in flexure. Materials %kith the Al 4 wt % Mg matrix
using optical and scanning electron (SEM) micro- exhibited slight non-linearit. up to the ultimate load.
scopes, both in situ and after testing, with the objec- with failure initiating by fracture from the tensile
tive of identifying the damage processes and the face of the specimen (Fig. 5). Conversel). materials
failure sequence. with a pure Al matrix exhibited extreme non-linear-

it%. with extensive matrix deformation occurring by

4. MEASUREMENT AND OBSERVATIONS shear between the inner and outer loading points.
No attempt was made to interpret the information

4.1. Longitudinal properties obtained from the latter.

Typical stress-strain curves obtained in iongi- The dominant influence of the fibers on the longi-

tudinal tension are summarized in Fig. 3. Trends in tudinal properties suggests that it would be insightful
longitudinal elastic modulus with fiber volume frac- to make comparisons with the stress normalized by

tion are plotted on Fig. 4. The ultimate strengths are
foun d to be sensitive to flaws introduced during P- ip
specimen preparation. Only data for nominally flaw-
free material have been presented in Fig. 3. There are ,e U [--
several noteworthy features. The curves exhibit only o

slight non-linearity prior to failure. Larger strengths
are obtained with the AI-4 Mg alloy matrix com- '

Ci

220, IA

2007

1W cn

t~12

S•A,

140 PrteionA2-J 0 r"r)eno

*0 Transverse 0 agum

.1. 02 03 04 05 06
02• o3 03s 0'• 040 0505 0V02u5e Fracti 0 Ren 0s Fiber Volume Fraction, tI

Volume Fraction of Reinforcements. f t Fig. 6. Normaahzed ultimate tensile strength as a function of
Fig. 4 Trends in Young's modulus with fiber volume fiber volume fraction. Also shown are curves predicted using
fraction. Also shown are predicted lines for Ef - 340 GPa. fracture mechanics model tequation l l(b).
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the fiber volume fraction., Accordingl\. the normal-
ized strength a. -f is found to be insensitive to fiber
volumo, fraction (Fig. 6). but appreciably larger for
composites with AI-4 Mg than A! matrices. A 1

Simultaneous measurements of the longitudinal
,and transverse e, strains subject to longitudi-

nal loading revealed that the Poisson's ratio,
- varied monotonically from an initial

value v, ýz 0.25 to a final value at the ultimate ,
strain, V1 0.4 (Fig. 7)_ Such characteristics are
in accordance with the trend expected when there is
no significant dilatation caused by reinforcement.......
cracking.t

Observations of fracture surfaces indicate planar - AEVW &./w-

regions with intervening steps (Fig. 8). The planar
regions appears to relate to fiber bundles having 04100PM

locally high fiber concentration. The plastic stretch '_Ni

of the intervening matrix [Fig. 9(a)] is about equal
to the intrabundle fiber spacing. In circumventing..
regions nearly devoid of fibers. debonding occurs
at the bundle perimeter. leading to a substantially
larger plastic stretch [Fig. 9(b)). These locations
coincide with the steps, evident in Fig. 8. manifest VC
as changes in the level of the fracture plane by . -

several fiber diameters. In those materials pro- .

cessed with particulates, plastic failure of the matrix
involves hole nucleation and growth from the%6t
particulates [Fig. 9(c)]. In consequence. the plastic ,

stretch of the matrix is reduced and, on average.
is about half that for the materials without 5. 4
particulates,

4.2. Transverse and shear proper ties4V

The transverse properties measured in tension arc 1
summarized in Fig. 10. Also shown for reference
are the properties of particulate reinforced Al and I
A114 Mg matrices 114-16]. Trends in transverse elastic

tSuch behavior contrasts with the substantial dilatation that Fig. 8. SEM micrographsi showing the roughness of tensile
occurs in certain Al alloy matrix materials with discon- fracture surfaces of (A) Al 4 M1g, = 0 44. (B) A] 4 Mg.
tinuous reinforcemenES 114. 151. f(=0A. 10 Al. =03
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Stress strain LCurN c, obtained on notIchd shear I , . ..1--.1 . -e,1- -~ -

Ipeieinin'FiL:. I 'i iidicatc, the samei ircnds reseaa k- '

in thle tratls'%ersc ten~ion te'd'. %s ih stienetlh incert- 7;F - -
tueý in tile order Al -- A 1 4 Mu, -* '1 4 There XC ~ ~

s incanz ditfirmncc' hens cen the I%%, fiber otilen IlawV" 4
tatiofls. ss h the longiitudinal 01hear orientations heini. -W

the stronges n racture ,urfaces associaed %kith tilt: ~ a4
N nt u h ,a Lv w pect menl tiher sphi tin 2, and he rid -

tog [1indicated hx arrossxm Iin. I't Ii Al i~occur idjacen Ll

to area' has inc lo"s tibcr content I or the ttan'i o ý t.
s/wlar specimen. failure occur, b% shear localization iltýa

the matrix hetsscen fibers [Fig I Itl BL Ol

4.Matri\ propi rtitLes

The shear tests conducted on specimens, diffusiont
bonded %kith Al [Filg. 2nij) gase the shear stress-
strain curve indica ted on Fie. 14. The non-linearA

~A~- ~ It

Fie 9 SENI 'iesfthe fracture surl c~c of specimen, te..d
~ in longitudinal tension wto Material wiithoui particulate, in

a region hasing a high-fiber concentration re'ealine the
plastic stretch of the malns and the good interlace honding
(b) Same Material as (a) hut in a reeion ssiih loss fibe

M, 'rn concentration, indicating the greater plastie stretch of the
- matrix and some debonding let Maierral contaimnine Sic'qparticulate ndicating good interlace bonding and hole, in,

the mairx c aused h,% the partieulate, thai reduce the rhi'ist
stretch

S deformation was localized to the thin metal lasers
and failure occurred b\ ductile hole nucleation and
grow&th from the interfaces.

P Microhardnes- tests conducted on the composite,,

I1 ~ vwith inde~ntations introduced into matrix reetons
dev oid ot fibiers. guse Vickers hlardnesses. 11. of
760 4h - 20. 530 -ý- 30 and 175ý 30 MýPa for matrices

Fig giat of the. 2124 alloy.. Al 4 Mg and Al. respectixeir

Estimates of the matrix flo\N strength- tý tat it strain

ýw of - 71n) ma,. be made usinc. r, 113 see

S. SOMEF RELtATED I) 1ECF%\CS AND
S ATriSTI(S

I.. Tranci'i Him, s/ireng

- Continuum plasticlit calcul~ations proside a mean,.
of'stmul~ating the plane stratn traours -. c deformation
of unidirectional composites, IIZ. 13) Such calcu
lations predict a substantial influence of' the spatial

* arrangement of fibers on the fio's strength Rcsult.,
1FM4 obtained using two different methods arc summariiced

onFg I51) %\cu herein the strength. r~if ). is normal-
Fig 9(h) i/cd b\ thi. floss strength (if the matrix ro ) at the
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400- 2124........- - Fig ItI SENI %tews of fracture surface associated Aith
350 tri.n%%ersC tensile testing tAt Lom particulaic conient

iflt High particulate content

(L 200 7 Clulto are predictions based on sell-consistent method [2)1

Both methods appear to siteld stmilar strengths. Other
250 fiber arrangements gtve lower strengthening factors
150 -(121. Comparisons with experimnental measurements.

described bcloix. provide insight about the spatial
arrangement having the most practical relevance,
To facilitate interpretation, it is noted that for the
particulate reinforced composite 607 can also be

0 5 2 25 3 a 5 4

Stramin %) Mr4

Fie l10 ia, b.ct Transverse tensile stress, strain curves corn-
pared witth curves for the same matrices reinforced with 7141. ý0 33,
9 0 ni SiC pariiculates, Also showkn are transserse floss%

Curv-es calculated as described in the iext.

ci4ui~alent strain, Corresponding stress stratn curses
are plotted oin Fig. 1 5h). The numertcal calculations 6
hawe been conducted wkith periodic boundar% con- A W -
diutins using, a Ramberg-Osgood power hardening
constitutise laN for the matrix 1201

%,.here rr,, is ieddstrength. (,, is the vie~d strain- Fig 12 Shear stres, strain curses obtaiined using notched
n, is the hardening coefficient and or- 3 7. Also showkn specimens
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with S are gien b% 16) and I = L R The tracture instabilht is gien b, the
criterion

S ,- (41 dAR dKI -S.RS,,•- on m, - 2)! ••dL• d

dL dL

,here S,, and L._ are scale parameters and in is the
shape parameter associated with the fiber strength subject to Keui K Differentating equations (5) and
distribution (Table 1) and R is the fiber radius. Note (81 and equating fwith ul given bs equaton (9)c leadsto a solution for the ultimate strength. which occurs
that. in this limit. S is independent of gauge length. at a crack extension

When fiber fracture involves stress concentration
effects from neighboring failed fibers. analysis of the L. B -.- B- - AC

ultimate strength requires a stress concentration I. R A (0la)

model, as well as a composite fracture criterion. Such
analyses have previousl% used a numerical simulation where

to evaluate the fiber failure probabilities [3]. Their B = ,"I- ,.-,-?,8---(1" .
general implication is that a transition in ultimate

strength occurs. such that fracture mechanics con-
siderations become increasingly important at larger A = --2:
values of - and f Consequently. an approach based A

on fracture mechanics, suggested by a companion
study [221. is used to provide useful insight when C = -'-1)'.
composite failure involves the coplanar failure of
fibers (Fig. 8). The crack growth resistance KR of the The ultimate strength is then given by substituting 1.

material for relatively small crack extensions. L. is into equation (9)

given by [22) K ,

Ki - KRo+2 2yo (I -ff)/L (5)

6. PROPERTY ANALYSIS
where x is a constraint factor (of order 2.5) and K. is
the fracture resistance of the fibers, (K0 : 3 MPa 61. Elastic properties

-m). The stress intensity factor. K. for a circular The expected longitudinal elastic properties of
crack large compared with the fiber diameter is the composite. E =fEf + (I -f)Em. based on the

2 reported properties of the fibers and the matrix
K = -- _ a a (6) (Table 1) do not agree with the present experimental

IV/it measurements. The most feasible interpretation of
the discrepancy is that the fibers have a lower

when a is the crack radius and a is the imposed stress. modulus than expected. The inferred fiber modulus
For a small crack within a single fiber, the elevation
of the stress caused by the high modulus of the fiber th rr=n40'Pa eaic modUs, this prEdt

is iportnt, uch hatthe tranet,,,,,, elastic modulus, ET, is predicted
is important. such that using [23)

K ;t-a Va(Et E). (7) ET=I+ l;+ ff (12)
. n E.E I - qff

For a crack growing out of a single fiber, radius R. where
interpolation between equations (6) and (7) gives

K -- = I ,/'L + R + ;.,/iR} (8)
",,/f and ," is a parameter dependent on the geometry and

where a = L + R and ; is a coefficient that reflects spatial arrangement of the reinforcements. Agree-

stress elevation effects given by, ment between measurements and predictions (Fig. 4)
requires that ; ; 2: the value associated with a square

(Ef - E),E. array of continuous fibers [231. A similar conclusion
regarding the relevant spatial arrangement of fibers

Equating K to KR for crack growth gives is reached when the transverse flow properties are

addressed, as elaborated below.

wh er +---e + 1 6.2. Transverse and shear properties

where The transverse and shear stress-strain curves for

Z = o1,,!R/Ko, Zo- = xrov/R(l -f)./Ko the three different matrices, as well as the curves for
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the particulate reinfor,.ed m aterials. are qualitativelv ,co .A ".

consistent viith the continuum calculations. Notabls. •.

the composite strength increases as both the matrix
strength and the reinforcement %olume fraction "-C 60 -* C.t Wte .

increase. AdditionallN. the transerse and shear prop- c

erues are consistently related to each other b\ a .,,-ew c;

factor. % 3. in good accordance with the Mises 2 40

criterion. Ho'wsever. more detailed analksis reseals

discrepancies For rational assessment of these dis- 20 o7•
crepancies. further diagnosis of the material proper- .
ties reflects the concern that the matrix properties in o
the composite often differ from those associated
within the monolithic matrix. Consistency is thus
sought between the properties of the composites 200

(particulate and fiber-reinforced), and the in situ b) At,'4Mg

matrix properties assessed from the hardness. - .
For the Al and Al 4 Me systems, the experimental {, MCa,,, "

cur'es for the particulate composites [15. 16] are first - I.deasor

fitted to equation (2) to evaluate the hardening m -

exponent. n. and the composite reference strength C,,. W - -.

Then. 6 % is used to determine the matrix reference T so
strength, ac,, using a procedure described elsewhere o
[13], leading to the calculated matrix strengths plotted 0o

on Fig. 16.t (Note that the Al matrices exhibit the
largest work hardening but the lowest yield strength.)
Thereafter. the matrix properties (determined in this 0 . . s A 7 .. ....
manner) are used to predict the transverse properties Strain (%)
of the fiber composites, using the maximum strength-
ening ratio predicted from either finite element or 300

self-consistent calculations (Fig. 15). c) 2

Inspection of the results (Figs 10 and 16) estab- 2W0
Mal-

lishes the following factors for the three respective
matrices. (i) The Al matrix composites exhibit com- •. 2oo

plete consistency between the flow properties of the t

two composites as well as the matrix properties V 150

determined either by hardness measurements or by 2
shear tests. However, the matrixflow sirength is larger W too

than that usually attributed to bulk Al [Fig. 16(a)].
(ii) For AI'4 Mg matrix composites. the matrix flow
properties ascertained from the particulate composite 1 .......2. 3. ,
and from hardness measurements are similar to the 1 2 3 4 5 " 7

properties of the bulk alloy (Fig. 16). However, the Strain (%)
transverse properties measured on the fiber com- Fig. 16. Comparison of measured and calculated matrix
posites are appreciably larger than the predictions. stress-strain curves. Also shown are stress- strain curves for
(iii) Materials with 2124 matrices exhibit consistency the bulk matrices as well as the matrix flow strength inferred
between hardness measurements and the bulk matrix from hardness measurements.

properties. as well as the calculated transverse flow
strength. discrepancies may be addressed through the follows-

Two principal discrepancies emerge from the above ing considerations. Composite matrices can be
analysis (i) The matrix in the Al alloy composite strengthened in two ways.: Firstly. reaction with the
is anomalously strong. 6ii) The transverse strength reinforcements plus contamination may lead to either
of the Al Mg composite is anomalously high. These solute or precipitation hardening. SecondlN. grain

------ and dislocation cell evolution during processing ma%

+For the 2124 matrix composites, since particulate com- involve interactions with the reinforcements, result-
posite data were not available, the flo%% strength of the ing in Hall-Petch strengthening. Related studies [251
monolithic matrix was used to calculate the composite suggest the latter.
transverse strength. It is concluded that the spatial distributions of

' Contrary to some previous assertions, residual stress effects
caused bh thermal expansion mismatch cannot account fibers giving the highest transverse ant shear .strengthi-
for the observed behaior because such effects are elim- ening levels appear to be most applicable to these
mated at strains. j z 3-5q (241. composites, as also found above, for the transverse
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laicproperties Thle absenice of' preferred shear model %kould ins l%, anakijs oi t the iiulcl!i onnt
plane, that might cause diminished leesof strength- caecneot' thc'e k u-ssthin the cm cx.

en ing [1-21 s inte~rred. even though transverse failure h,.drostatic ten-ole iiilte iht we ip ntei.r'

insohses, shear localization. A further implication is and. indeed cause, the: lrjns' cr' ireiehnilc
that cell calculations based on regular arrangiements Anakl'.o Of the loll 1 tidi11i0 PrOperti1e, ha',
ot fibers pros ide a reasonable simulation of' the established that inber interaction' are: in' oh e inW

behax or found in actual composites- the Idilurec process. leadin! ito an ultimiatLe sirvrieth
goserned b\ fiass propagatlion ýkni in fiber hondich:

o .L'niieciidow ir'uenierh tConsequentl%. the sirenaih-ý are seo~m\htist, tibet

One of the difficulties in the analssis of' the longi- damage that occurs dlurine, prokces~inc_ and tnto m

tudinal properties concerns the in situ strength of i.Efctsh o fber olu trctonsitn andi tains floss
the fibers. Fracture mirror measurements (which strengt arebral nstnish. imhc

can be used for this purpose 1261) have not been model based on the crack extension insiahilit

successful for FP.Al-O, fibers. ConsequentlN. littera- Some general results applicable to metal1 ma~ins

ture data [2 7 are used to estimate the fiber proper- composites with a relati'il\ large 'olume traiction oi

ties iTable 1) On this basis. the probahiistic failure wkell-bonded fibers emerge front the precedcine discus-

model for non-interacting fibers [equation (3] sion. Well-bonded fibers in ductile matiri\ Cortposites
predicts ultimate strengths a, fI: 2-2.5. appreci- lead to high stiffness and flott sO-cinieri- relatis cio the

aN~ n eces of easredvales (ig.61.The matrix, in longitudinal and trans% erse tension-is a-,%ell
insalidits of' the model is consistent with the co- as in shear. The l-ingatidmoal faiurc properties in,.ohs c
ordinated nature of the fiber failures as manifest in felaw rpgtic onA wairsthains f hiber bunde is. leaInme t
the relativel3 planar intrabundle failure (Fig- 8).rltvl o alr tais hc r k ests
Accordingls. the predictions based on a crock to processing and machining damage, Tran~isirs,

cxCNIIISo1 inechanisnz [equation (11)] obtained by- *fýiurc' insolves ductile fracture in the matinx, but
also occurs at relativel% los" strains because of' bhigassuming that a single fiber acts as the initial flaw

(Fig. 61. are appreciably closer to the measured hNydrostatic stress in the matrix coupled with \oid
values- However, the corresponding extent of crack nucleation at the fiber matrix interface.
growth prior to failure is only. L ,: 0.5R. A more
complete attempt at predicting the longitudinal RFRNE
strength. using more information about intra- RFRNE
bundle fiber spacing. is made in a companion 1. C. Zweben. .41.4.4 J1 6. 212'1 (19(,S)
paper 122). However, a rigorous model may require 2 J. M Hedgepeih and P. san Dyke. J ( nip Wiaer 1,
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THE MODE I FRACTURE RESISTANCE OF
UNIDIRECTIONAL FIBER-REIN FORCED ALUMINUM

MATRIX COMPOSITES

H. C. CAO. J. YANG and A. G. EVANS
Materials Department, College of Engineering. Unisersit% (-, California.

Santa Barbara. CA 93lO0'-O505. U.S.A.

i'Receired 16 Dece'ni'~ 1991)

Abstract-The mode I fracture resistance has been measured for Al and Al .4 Mg matrix composites.
unidirectionally reinforced with ceramic fibers, prepared using a squeeze casting technique. Effect, of SIC
particle additions have also been investigated, The Al 4 Mg s)ystem had high toughness. whereas the Al
matrix system had a relatively low fracture resistance In all cases. the addition of particulaies slightl%
decreased the resistance to crack growth The fracture resistance was simulated b.% a ductile briogi ng model
with plastic dissipation occurring within a zone governed by the fiber spacing. The tensile strength of these
composites has been estimated, based on the resistance behasior and microsiructure.

Resmi--La resistance d la rupture du mode I a iet mesuree pour des composites a inatrice d'aluminiuin
et a matrice d'aluminimum-l4% magnesium. renforces dans sine direction avee des fibres ceramiques et
61abores a partir d'une technique de coulee sous pression. On a itudie egalement l'effet d'additions de
particules de SIC- Le systeme A1,4 Mig presente une resistance &levie. alors que le systiime a matnce Al
presente une resistance ii la rupture relativement faible- Dans tous les cas. ]'addition de particules abaisse
un pesi la resistance a la croissance des fissures. On a simule la resistance A ]a rupture a laide d~un inodele
de pont ductile avec dissipation plastique. actif a l~interieur d'une zone regie par l'espacement des fibres.
On a estime la resistance a la traction de ces composites en se basant sur la resistance a la rupture et sur
la microstructure.

Zusamrmenfassung-Der Widerstand fur Mode-1-Bruch wird an Verbundwerkstoffen mit Matrix Al oider
Al 4 Mg. gericbtet verstarki mit keramischen Fasern und hergestellt mit dem Quetsch-Gugl-Verfahren.
gemessen. AuN.-rdemn wird der EinfiuO von SiC-Zugaben untersucht. Das System mit AI4 Mg wies eine
hohe Harte auf. dagegeen hatte das System mit Al-Matrix tinen vergleichsweise geringen Bruchwiderstand-
In samtlichen Fallen verringerte die Zugabe von reilchen ein wenig den Riflausbreitungswiderstand. Der
Bruchwiderstand wird simuliert mit cinemn duktilen lOberbi-fckungsrnodell. bei dem innerhalb cuter voin
Faserabstand bestimmiten Zone plastische Dissipation auftritt. Die Zugfestigkeit dieser Verb undwerkstoffe
wird abgeschitzt auf der Grundlage des Widerstandsverhaltens und der Mikrostruktur.

1. INRODUCTION the fracture resistance in excess of that for the brittle
The racureresstace f copostestha cosis of constituent derives almost entirely from plastic dissi-

The fracture rasisone fcil compstituest thas beenthOf pation in the metal. The dissipation is found to be

onebricttlefandtonsie ductiecnttent rsac11-.Thasben sythem reflected in the magnitude of a parameter, f,,amu

ivsubtiofgatednsivde rcentresarich and 1 iThre sstems re [1.2. 141: where a., is the flow strength of the metal.

invesigaed wincud eramis and al nter-5.ms etllasre f,., its volume fraction and u the plastic stretch

inforced withetials 57 and meally ma-rix aopsiwelas between the crack faces. The plastic stretch is, in turn,
laee- aeil S7 n ea ttxcmoie strongly influenced by the ductility of the metal, as

[8. 9]. Various cracking behaviors have been ident- well as debonding tendencies at the interface (2, 6].
ified [101. The pr Iesent article provides a contribution For systems involving combtnations of Al with
to this topic by investigating the mode I fracture AL~O, which z;xh bit bu2nk!.-i~ ~ metal
resistance of metal matrix composites (MMC) con-
sisting of Al alloy matrices reinforced with continu- ductility [11. 13]. i It has been found tat the stretch

ous ),O fiers111.12] Ths sstemtypfie an may be adequatelý' related to the stress on the metal
ous l.O fiers[II.12] Ths sstem typfie an ligaments by a linear softening law [14]

MMC with a well-bonded interface [10. 13).
The mode I fracture behavior of materials with a;,C( -Ul,()

one brittle and one ductile constituent is seemingly
insensitive to the morphology of the constituents. The where u, is the rupture stretch and er, is the con-
interpretation and prediction of the fracture resist- strained flow strength of the metal. In turn, c., is a
ance is essentially the same for brittle matrices re- multiple , of the uniaxial flow~ strengh, . [1, 112, 14]
inforced with melýtals I1 -5). layered materials [5-7) and
metal matrices reinforced with brittle fibers. Notably, = a.(2)
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For a bonded intcrface. Z depends on the wsork 0
hardeningŽ coefficient for the metal . N for Al allox' 1 L

vith N ::5. 125) [1, 2]. Subtject to equations 1I 0 of,
and (2). calculations of the plastic dissipation upon (0) Cl: 0

crack extension kA [141 predict that the crack grosth
resistance_ A*4.. increases as the crack extends in (b)
accordance with the non-dimensional relationt

"A4 R /17,14 f. = 1.61 - 0.09F - 0.53/1

0=g~)f3)

where I = Aa L.,. with Ls being the crack length at U
[O

which steady-state toughening commences. defined as U.

[141 E Q 4

L,=0.37Eu, (I - r1 )4 4) > Data Fit

where E is the longitudinal Young's modulus of the LL_
composite. 0 _ _ _ _ _ _.. .....

The increase in resistance superposes on an C 2 A 6 8

initiation resistance 9ýo. The magnitude of I,, is Relative Distance From Fiber Cluster Center. x, x.

also known to reflect plastic dissipation. through
crack tip blunting. and may be appreciably larger Fig. I (a) Digital image of a cross sectional SEM sic of
than the intrinsic fracture energy of the brittle a Al 4Mg FP fiber composite 1121 (/. =10471 (bi olume

e fraction of ceramic fiber as a function of the area nea'ured
material. T,' [7]. The full fracture resistance of the from a cluster center
composite is

x= ,,+ A5, of particles of either Al 0, or SiC. causing the

K(5) particles to adhere to the fibers. The particles separate
the fibers and maintain fiber separation during the

where K is the stress intensity factor. squeeze czsting operation. These composites have a
The application of the above concepts to M MCs is fiber volume fraction in the range f, = 0.3-0.45. The

addressed in this article. It involves measurements of resultant composite contains SiC particulates with
the resistance Kp(Aa), the critical stretch u,. the metal volume fraction _/, in the range. 0.03-0.15. Corn-
volume fraction. f. and the in situ flow strength of posites produced without such particles have fibers
the matrix a_. This information is obtained for a configured within bundles having high local volume

combination of tests described both in the preent fraction [121, f A 0.7-0.8 and a similar overall fiber
article and in a companion study [12]. fraction.f.f a 0.3 - 0.5. A summar. of the materials

produced and of the associated reinforcement charac-

2. MATERIALS teristics is prcsen:ed in Table 1.
In both materials, some clustcring is evident.

All materials examined in this study have been with an average cluster diameter of -500tim. The
processed using a squeeze casting approach [11, 12]. fiber volume fraction is highest at the center of
Two matrices have been used: a high purity Al. as the cluster and lowest at a cluster junction. The fiber
well as an Al 4% Mg alloy having the characteristics spatial distribution, taking the center of a cluster
described elsesshere [121. The reinforcements are as the origin, can be approximatcl\ represented h\
FP AI:O, fibers. Two approaches have been used (Fig. 1)
to produce the fiber-reinforced materials. In one

case. the fiber strands were drawn through a slurry tx x =, A exp( - ., )•] 161

fThis poltnomial form ha- been obtained by fitting to the where 7'is the mean fiber volume fraction %)thin an
numerical result from Bao and Hui 1141 area of radius x. v, is the cluster dimension and A and



A.\O ): , \1 01It)[t I IR \CTtRf Of ALtiINI NI-\TRI\ I.OIP()-iSIt If S

I 7 dI ,'<- It• u' e'. T' rere made v! 0/e0, iton hm •.lr •. 1 0 - "1ir.

.i *- . t"lescope antd h polJ•i)III 01C i Side 'urlta.jc pi to
tSnc E lt g artail Lit' •ird i a ! . to r '. ah c[. K ., I), C't !

,1 1 .,pr idCd a check Oti the ,.,., lenth relecl.' +-
, .h conltphtinc chine',

In a te6 cases. tran,'cr c . , .r-' prepa red .it

1; arc tittng paramneters haxing typical ,aiues indi- arious, ,tjaLes of crack C\Icn,)Ols 10 lta )h-i Otwt h,

cated o.n Tablc ' -\t the center of each cluster. the cracking features in the 'pccimcn nitcrio. ,crc ,orn-

fiber, are nciirl\ closc packed parable to mcasuremcnt' pcrtiOrmed on Ohc •h t+c,

In other cases, crack exictision kka' flionltiorco !,ý ,,':,

3. PRELIMI1,.R'N OBSERVATIONS AND in the scanninig electron nicroicop, c 16
TEST P'ROCEDIRES

Obser ations of the mode I crack extension process 4. EXPERI 1E'TAl. REStLTS

ha.e indicated the existen•cc of a fracture process zone 4 1. Fracture resi.sram, i'ticaireinevil

(Fig. 2). Within this zone,. the ceramic reinforcements A typical load displacement iP.o cur\c obtained
are cracked. The cracks are essentiall\ coplanar. for a compact tension specimen is prcsentcd in Ftc 3
although multiple cracking i, apparent in some cases. A summarx of fracture resistance curse, i' presented
The inter\enmgn matrix is intact Aithtn a bridging in Figs 4 and 5, The maior characteristic' of th,.ý,c
zone and subject to plastic stretching. The leading curses arc as follos. The initiation resi,,tance 1

edge of the bridging zone is dethaed a. ilic crack lip appears to be relati'el+ insensittxc to the matri,
.5. 9[ Thi,, conmention is useful for relating the characteristics \%ithin the range encompassed b\ the

resultant fracture resistance to microstructure. but present group of materials (Fig -41. Hovke~cr. there
places an onus on the techniques needed to observe are appreciable variations in the subsequent propa-
and monitor the crack tip.+ gallon resistance K,> K_ Also. large-scale bridgtng

The selection of test specimens to measure the effects [15] occur in some cases. as indicated on the
fracture resistance reflects the influence of the figures (labelled LSB). Thie steadx-state fracture
bridging zone [15] and also addresses plane strain resistance K,, is substantiall, larger for composites
requirements. Preliminary tests were conducted using having an Al 4*,0 Mg matrix than for those %,ith a
single ecige notched beams subject to three point pure Al matnx [Fig. 5(a)]. Furthermore. particles in
flexure. From these tests, an intial estimate of the the matrix tend to reduce K,, for otherwise ccmpar-
initiation fracture resistance was obtained as. able materials. but cause a slightlv steeper rise in the
K, = la-1 5 MPa, m. Based on this estimate and on initial resistance [Fig. 5(b)). There are relativelh minor
the matrix flo" strength,', the size requirement (crack effects of notch depth [Fig. 5ic)]. In materials with an
length and specimen width) for valid plane strain Al matrix, crack path instabilitN is observed in some
toughness testing according to ASTM E399 is 70 mm specimens, wherein a crack deflects onto planes par-
for Al and 17mm for AI4 Mg matrix materials. allel to the fiber orientation Consequently. the results
These values should be considered as an upper bound arc not regarded as strictly valid and, in the analysis
because the yield strengths of the associated corn- that follows, the more reliable results obtained on
posites are significantly raised by the incorporation of Al,4 Mg matrix composites are emphasized,
the ceramic fibers. More precise estimates of the slip
zone size (Appendix A) give specimen size require- 4.2. Obserrations and measurements
ments of 24 and 6 mm for Al and Al 4 Mg matrix In situ observations such as that presented in Fig 2
composites, respectively. Consequently. compact have established the following sequence of events
tension specimens were chosen for most tests, with a during fracture (Fig 61. liE Crack extension initiates
width it = 25.4 mm and thickness h ;t5 mm. For when the tip communicates a brittle crack into the
such specimens. stable crack growth could be next reinforcing element, accompanied h% the for-
achieved using a servo-controlled testing machine.
Precracks were not essential because fiber fractures mation of a crack tip plastic zone (it) When the crack
occurred readi% a, the notch root to create a sharp grows, intact matrix remains in a bridging zone and
cracku expenences appreciable plastic deformation, titi) The

lcr ack. tmatrix fails by ductile rupture at the trailing edge of
All compact tens~ont measurements were made with thbrdig onwetecrc atinsed-

extcnsomcters attached to the specimens to allou h rdigzn.we h rL tan ia%
conteolofthecrattace top theng dspeciements to n ao- state. Fracture surface observations provide further
conrol of the crack opening displacements experi- information (Fig. 7). Systems iithout particulate.s
enced hr the specimen. Crack length measurements exhibit ductile matrix rupture by necking to a ridge

..... ... ..... between the fibers [Fig 7 (a)]. The plastic stretch of

For ihiýs reason. presious work on resistance behavior has the matrix is found to increase with increase in the
often dcfhned the crack tip as being located at the traihng fiber spacing. but on average is. u, 1Ipm. In
edge of the bridging zone

:r 60 NIP• for Al matrix materials and 120 MPa for materials containing particulates used to separate the
Al 4 Mg matrix materials [121 fibers, the particles act as void nuclei and limit the
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1iicai revioni r e~iieaher.e tier-i.od n~c indjimarix at the locatiuons B3. D or- ndmvc~ 't p ticn

plastic stretch of the miatin Itnamertt. l~ii: 7tihl to matri\ \icld streng'th. r-,prois decd that the: maitri\
uz 6 Aim. remains ductile Nota hls. a sott rmilrit r(J- the

fracture resistance Thi., hehas or iries h~c,:u'c the

5. 1%TERPRETATION %%idth of the plastic dissipation zoric in, ihc htdeiitg
region is governed b,ý the fiber spacing (I. ": ..nJ

5. 1. Fracture restsiasenct, consequentl\s the plastic dissipation diminishes'j (I

An approach for interpreting the separate contri- decreases Such behavior is oppi'sui to that usual!\
butions to the fracture resistance from initiation and associated %kith the wiiun'ilior~ci matri\ IHo-,exer. it

growth recognizes the superior understanding associ- is important to emphasize that isný changes, in matris
ated wsith the latier. Consequentli.. b\ using the microstructure used to increase strrienth 11141 miigi!
material parameters listed in Table I (assuming that al~se dimiunish ducidizi Aould cause the composite
y = 2.5. as appropriate to a bonded interilicei. the fracture resistanec to decrease through a reduced
resistance is predicted from equations (3 and 0) b\ plastic stretch. v_.
regarding K, as an unknown. The, initiation resistance has not been as exiensiseli

The comparison with experimental results is good inv~estigated. One fracture h'~pothesis. analogous to
(Fig. 8) and infers that K, : 13 MPa5 m The nsing the RKR criterion for carbide cracking in steels [I-,]-
resistance thus appears to be rigorouslN predicted b\ is presented in Appendix A. This~srvc%-bastdentenon
ductile ligament bridging concepts. prex iousl\ used to predicts. K, k 13 MPa, m. While this prediction is
interpret fracture in brittle matrix composites con- similar to the value inferred from fitting the exper-
tamning ductile reinforcements [1.21.6. 14). The most irmental results. it is not felt that such reasonalIc
significant variable influencing the resistance is the agreemeni validates, the RKR criterion. because (if'
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Fig 1. A load Pt`. displaccement 'im curse iobtained oin a mniaenils indicated in Tattie I ýith notc 0P1hd jpii a i ii
compaet tensior precimen irmaterial-A i Also shio~ iti a I.S13 rcfers it, large-sc:ale bridgting and SSII to srnal;.scatic

predicted kurve foT smiall-scale bridpine. SSII hridging
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so 50bradgind (LSHI A numcric.il proccdurtr %kould be
G• needed to estend the jtald si', into the LSB range

• 40 A
3I 0.•.• 110 A ~~5.2. L(o,,1[rudo i~i ./l'llii' -,! 'ltl

030 0 0& ° 0 o 'A • % 4 o •°ci Upon obtaining the complete fracture resistance
U •Po •curve. it is posihlc to prcdict the fracture strength ofS! -9* LSS

. 20 the composite, based on independent information
SPaaKugite -ontent fp ]concerning the flaR population. Failure begins withcr

1 0 0f , the breakaee of tndisidual fibers ha'mina the lowest
015 fracture strain, Hoxse~er. subsequent events depend

-o largely on the matrix ductiht% and the interface
0 5 0 is "roperties between the matrix and the fibers When

(c) Crack Growth, Aa (mm) the interface is strong, as in the present composite. if
_ _othe matrix has a relatiael• high flow strength and the

so.~40 -

r 0
30 - a IS

.i 20

io 1 25 A

LA 0. ~ 0
10 0i

Crack Growth, &a (mm)
Fig, 5 Effects of separate material and specimen variables
on !he fracture resistance curves (shown together is Fig. 4):
ta) matrix yield strength (aoiw = O.3.f = Of= 0.3 - 0.47);
(b) particulate content (AlMg matrix. a,,- = 0.3f(= 0.3-

0,47); (c) notch depth (Ali4 Mg matnx, f= 0.47fr = 0).

considerable uncertainty in the material parameters
that govern K. This is an area that merits appreci-
able further study.

Finally. the crack bridging formulae [equations
(I H4)) may be used to predict the load'displacement
curve P(b). A preliminary attempt is reported for
small-scale bridging (Appendix B). A predicted P(n I)
curve is superimposed onto that determined exper-
imentally (Fig. 3). The correlation is good for the Fig 7 Scannin electron mncrographs of Cracture surface ofthe reinforced materials. 1a) Necking to a ridge in materials
initial portion of crack propagation. The discrepancy %sithout particulate%. Ihl matrix rupture h% hole nucleation
at larger crack extension is associated with large-scale and growIh from particutates.
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data bands obtained from' FiL 4 tall 1, ind a w, for both

theAl4 M ad t mtn ~dimensional streýss sustained hb the composite :

the crack extends can be dertxed as

fibers are closely packed, the initialls failed fibers -" 4
communtcate with the neighboring 'material and O aa E) F

elevate the stress in the surrounding fibers. The :1 -~ i4.c

subsequent interactions )ead to the formation of -- 9

a macroscopic crack, which causes final rupture
of the composite. The present observations suggest This non-dimensional stress (Fig 91 exhibits a maxi-
that the localized fiber clusters (Fig. Ii are the mum that represents the fracture strength. a,. This
failure initiating entities. A tensile strength is strength shows a weak dependence on initial flaw size

thus predicted by assuming the presence of flaws (Fig. 10). provided that a. is smaller than the cluster

having size comparable to the cluster dimension size. Agreement with the experimentafll measured
in the composite and then using a fracture mech- strengths 112] is quite good for Al 4 Mg matrix

anics approach, incorporating the fracture resistance composites (Fig. 101. Similar comparisons for the Al
curve, matrix composites have not been attempted. because

For a composite with nonuniform fiber distil- of the uncertainties concerning the resistance curve,
bution, given by equation (6). the resistance curve can noted above.
be obtained from equation (3) as The preceding analysis implicitly assumes small-

9R = 5. + [1 - &a..'xJyau, g (7) scale bridging dominance. When the crack extension
before the final failure is appreciably greater than the

where a is the crack length and Jis given by equation initial flaw size. large-scale bridging would have to be
(6) with x = a. The driving force for a penny-shaped taken into account.

flaw subject to stress a is given by [12]

9 = 4o 2a,(;. + aao)2 inE (8) 6. CONCLUSIONS

where a. is the initial crack length and ; = Ef/E is the
Young's modulus ratio of the fiber to that of the The fracture resistances of ceramic fiber reinforced

Youn~s oduus atioof he ibe, totha ofthe Al alloýr matrix composites have been measured. The
composite. Equating equations (7) and (8). the non- Altal matri cmsite at been measuredteinitial fracture resistance at zero crack extension

has been shown to be insensitive to matrix character-
ri 60 istics. Conversely. the subsequent crack growth

250 resistance is strongly influenced by matrix properties,

The crack growth resistance has been attributed
-o5 to plastic dissipation through ductile bridging.

modelled using a softening traction laA. The dis-
sipation is limited to a material volume that scales

E with the fiber spacing. ConsequentlN. high toughness
Sa Pis encouraged by a high yield strength matrix and

Z large diameter fibers Occasional debonding at
0 2W 40D 600 Boo concentrated metal phases expands the plastic zone

Crack Growlh. Aa (mm) and further enhances the local crack growth resist-

Fig. 9. Non-dimensional crack extension stress as a function ance. The addition of a particulate phase tcnds

of crack length for different initial flaw size iAl 4 Mg to reduce the steady-state toughness. but leads to

composite) obtained using the parameters from Tables I an enhanced tearing modulus an important property
and 2. when the flaw size in the material is small.
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16. M. Shay,. D. B. Marshall. W. Morris and A G. Eans.

Adtanted Canipo.stc Material. (edited b3 M. Sacks). ii 1 (3 7)(P P,,J'HIa i.niea (1B2)
Orlando. Florida 11991).

17. R. 0 Ritchie. J. F. Knott and J. R. Rice.J. Mech. Phii.. %. here P, is the limit load, given bN

Solidv 21. 395 (19731 P, = 1.455.(f - a o,
18. J. Nunes. ,(roe Ma'erialh and Mechanicr. Research

Center. AMMRC. TR82-61 (1990) with
19 H C Cao. .4dranced Conmp.awre Matertal; fedited b% + _2. 1'1 ' I

MI. Sacks). pp. 48 5-49 2 (1991)1_ ] : j--
20 H Tada. P. C Paris and G. R. Irwin. The Stress% ,ito 'U-a J -Z- j

.4inali. o/ Crackv HandhooA. Del Research Corpor- and H is a numerical function, tabulated bs Shih [211 for

a.u .193 . rradifferent values of it and a ,, Furthermore. the fracture
21 V. Kumar. 10 D. German and C F Shih. AIn En ' y- resistance is related to the applied load b%

et'ring Approach for Ebosi -Plan•, Fracture An toalo.
Electric PovAer Research Institute 11981) ' = P P . : 7"a I, I (B31

where T is a numerical function given b% Tada 1201
APPENDIX A Equating A io, K,. the /'io! relation can be obtained

Erlpoiaton of the hitti•itoao Revivranice after eliminating a Kp is ascertained from equations 4 1)--(4)
with KA = 13MPa mu.= loUm. I=0,44. / 25.

In order to estimate 's. a criterion [or crack growth is a = 1201 MPa. 21 4 mm and an initial crack length.
needed One criterion, analogous to that used to predict a, = N mm

AM *.- i'4
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Abstract-The tensile strength of ceramic and metal matrix composites is subject to an important role
of the fiber matrix interface. The mechanical properties of this interface dictate the stress concentration
that develop% in fibers that surround a failed fiber An analysis of this phenomenon is used to illustrate
interface conditions that sufficiently diminish the stress concentration that a global load sharing criterion
may be used to prescribe the contribution of the fibers to the composite strength. This. in turn. leads to
a criterion for the transition to failure by local load sharing.

1. INTRODUCTION transfer along the fiber. via the interface sliding

Continuous fiber-reinforced composites exhibit stress. r [5]. The essential phenomenon concerns the
influence of load transfer on the stochastics of fibertensile properties sensitive to a major mechanism fale.w rbytenm alierguckgt

transition between global and local load sharing.

The existence of this transition has been identified for becomes dependent on bc. The consequence is gauge

(MMC) length independent tensile strength (when d6 i. L),ceramic-matrix (CMC) and metal-matrix (M ) given by (5]

composites (1-9]. The transition, when it occurs,

leads to a substantial tensile strength discontinuity, Su =fS0 [21(m + 2)]"' "(1(m + I)Y(m + 2)] (2)
involving a major decrease in ultimate strength
when local load sharing conditions arise [3,4, 6]. For where fJ is the volume fraction of fibers along the
constituent characteristics that provide global load loading axis: m is the shape parameter (Weibull
sharing. fiber fractures that occur prior to composite modulus) and St the scale parameter representing the
failure (for statistical reasons) do not lead to a fiber strength: L, is a normalizing length (usually
significant stress concentration on the intact nearest taken to be I m). For shorter gauge lengths (L < 6J)
neighbor i-bers [5, 10. Ill. Instead, the load is bone, the tensile strength s. exceeds S. [7. i11.
almost equally, by all the intact fibers. In this case. For MMCs subject to global load sharing, the
whenever the gauge length, L, exceeds the load contribution of the fibers to the tensile strength is still
transfer length, d, multiple fiber failures are expected given by equation (1). with the appropriate, r (7, 8].
within the gauge, L, prior to composite failure. However, in this case, the matrix also carries some
The load transfer length thus becomes an important load, governed by its yield strength, a0. Conse-
composite characteristic. It is defined as the length quently, the tensile strength (when di, ( L) becomes
over which the fiber displaces, relative to the matrix,
upon failure of a fiber [5, !I] (Fig. 1). For simplicity, a,, = S, +fm.o (3)
it is generally assumed that sliding occurs in accord-
ance with a constant shear stress. -, interface sliding where f. is the volume fraction of matrix. This result
law [12-14). This shear resistance is related either to is independent of both the misfit strain (residual
debonding and frictional sliding of the fiber coating, stress) and the gauge length (7].
or to shear yielding of the matrix. For this case, 6, is When a transition to local load sharing occurs,
given by (51 composite failure involves the progressive evolution

S= ofrRI2T (I) of a dominant (mode I) crack, from a region contain-
ing failed fibers [4, 6]. In this case, two composite

where ar is the remote stress on the fiber and R the characteristics have major importance. (i) The local-
fiber radius (Fig. I). More complex sliding laws can ized spatial distributions of fibers, which influence the
be used. as appropriate (14]. stress concentration transmitted to nearest neighbor

For CMCs. composite failure subject to global fibers [1, 2]. (ii) The short crock crack-growth resist-
load sharing is preceded by multiple matrix cracks [5]. ance of the composite, which dictates crack evolution
Hence. the matrix does not contribute directly to within local regions [5, 6]. It is not the intention of
composite failure. However, there is a vitally this article to derive failure models when local load
imrportant indirect influence, associated with the load sharing conditions obtain [1, 2,4]. Rather, derivation
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. -. •.~...- neighboring fiber., gocrn, th, p ohahbili. ot sur-
,i-al. through the otutisttic / prIpnrviti t; ih" tfibers

.~~..,,. In this seuon. sonic of the undcrl i~ng geometri,

4 : "and statistical phenomena arc presented., 4iith the
objective of specilt.inf; lesels ol stre's conccntration

.. .---- ' - .. releant to global and local load 'haring lheti the
mechanics that relate the siress corentration to

material properties are presented in the lollov~ifg
• " • • ... - section.

The close-packed arraneement of fiber, shown iii

Fig. I is used. since this is the preferred fiber geometr'
7 ,/N, -, ,-> *• /'-for the avoidance of tiber oamage during processing

*.~.' <' \j •.-,• K.._ Each fiber has 6 nearest neighbor's located at r = 2s
2ý ' Then. there are 6-12 next-nearest neighbors located

S-,~ .> " betiveen r 3= 1 and 4;. For the composites of\,•J 5,•" -,"\ ,J
4 , / primar.s interest, the interface sliding stress i is small

- ,-. ' <-> compared with the bundle strength of the fiber. S.
',,>/ x • \.. , \.,, The load trans/er length r. thus large rlarit to the

•/ fiber spacing, Furthermore. gradients in stress along

2A- the fiber axis. :. are small compared \htth those
in-plane t: = 01. Consequentl\. the a. stresses along

("-", > @ /"" ,-", r. at 0 , 0, are most relevant to the evolution of fiber
S, <> k v.,> failures in the composite.

Fig. 1. Schematic indicating the fiber arrangements and the A prelirinari assessment of composite behavior
interface characteristics used in the analysis. may be obtained b, evaluating the relative survival

probabilities of the nearest 0K, and next-nearest.
(P'. neighbor fibers, subject to the stress a..(rl.

of a physically-bh.sed criterion for the avoidance of The development of a well-defined crack from an

local load shanrin: ,s addressed. initial fiber failure cannot occur. whenever 4," <0S

The basic mechanics underlying the transition because there is no mechansm for syistematicaliv

from global to local load sharing has the follow- concentrating the a:.(r) stress at the pertphery of

ing features. When a fiber fails and sliding occurs the damage :one of failed fibers. Consequentlh. this

along the interface (Fig. 1). stress concentrations inequality ensures that the composite will exhibit

a-, develop in the nearest and next-nearest fibers. global load sharing.
It is expected that the magnitude of the stress The survival probability of a row of N fibers that

concentration be sensitive to three principal vari- fracture in accordance with a two-parameter Weibull
ables. the interface sliding stress, -. the fiber volume distribution, subject to a uniform stress o.. over a

fraction and the fiber/matrix stiffness ratio. Calcu- length 6,, is given by [5. 1I]
lation of the stress distributions around a failed fiber, -In 0, = N[a:. iS]"'(6, 1). (4)

subject to the above variables, thus provides essential
background. Consequently, for d, $, s (Fig. I), the condition for

The stress information must be combined with GLS depends on the stress ratio
stochastics to provide a transition criterion. The
approach adopted here involves comparison of the a t a"

survival probabilities 0, of successive fiber "annuli" and is given as
within the array depicted in Fig. 1: nearest neighbors.
next-nearest neighbors. etc. A conservative condition 2 < N ) (5)
for ensuring global load sharing is used to provide The stress ratio A in the nearest and next-nearest
preliminary results. based on 4, for the nearest neighbor fiber -annuli' thuF provides a preliminary
neighbor and next-nearest neighbor fibers. measure of the importance of the stress concen-

tration for the operative load shanng mechanism.
2. GEOMETRIC AND STOCHASTIC The locations of neighboring fibers is related to the

CONSIDERATIONS fiber radius. R. through the fiber volume fraction f,

Statistical considerations dictate that some fibers in acordance with

in the composite fail at moderate loads. Such failures f z 21t[A, 3(2.s R)21. (6)
induce a stress concentration in the neighboring fibers.
The magnitude of the stress depends on the material Consequently. for some typical values. A` = 6.
variables noted above, as well as the geometric N"" = 9 and m = 10. a coefficient. ;. ( 1.04 appears
arrangement of the fibers. In turn, the stress at the to be required for GLS to be assured. However,



HE et al.: THE ULTIMATE TENSILE STRENGTH OF COMPOSITES $73

Go b

Go-~

'02 I

002

Relative Distance. x R Fber Vowme F,acao•.

Fig. 2, The stress concentration along the crack plane Aa.o. Fig 3. The stress ratio, .. f. . -- x . as a function of fiber
for an elastically isotropic system with T = X. volume fraction.

larger values of ;. may still allow GLS, especially to the latter stress reduction regime is governed by a
when m is small. These results provide a perspective non-dimensional parameter
for assessing the mechanics, f) x(T K): (8)

3. MECHANICS SOLLTIONS where K is the mode I stress intensity factor. Notably.
reduced a.. stresses caused by sliding arise %%hen

The mechanics problem represented by Fig. I is
addressed at three levels. (i) Some basic analytical n2 < 002. (9)

solutions for elastically homogeneous materials are Connection to the present problem is made by noting
used both to provide perspective and to establish that K, for a failed fiber in an elastically homo-
various bounds. (ii) Numerical results are derived geneous system is: K = (2i /n)a10 i R. Consequently
for elastically homogeneous material, in order to
establish a detailed understanding of the role of 0 = (n!4)(x !R)(t/if)-. (10)

the interface sliding stress. r. (iii) Numerical results By equating x to s and relating siR to f by equa-
with different stiffness ratios are derived in order to tion (6), the slip calculations (Fig. 4) establish that
examine the influence of matrix properties. reductions in the stresses on neighboring fibers caused

3.1. Basic analytical results by interface sliding are only expected (for typical f)
when r is small, of order. r/Of < 0.1. Furthermore. the

Two analytical results provide important insight, requirement for small values of r!/of is most important
(i) The field around a penny-shaped crack, which when the failure probability of the nearest neighbor
provides the soultion for an elastically homogeneous fibers approaches unity. This occurs u aen or - 5,,
system, as r -- io. (ii) The stress ahead of a crack the fiber bundle strength. This perspective facilitates
subject to slip on a plane normal to the crack, the choices of r suitable for the numerical calculations
occurring at constant sliding stress, r. performed in the following section.

The full-field solution for a penny crack in an
isotropic elastic solid (Fig. 2), yields information 3.2. Numerical results
about the local stress elevation A,:: caused by the The variables in the analysis are the interface
crack sliding stress, the applied stress. thl fiber volume

Aa,. = o'(x) - 6r. (7)

Features relevant to load sharing are based on ,
the stresses that arise at nearest and next-nearest
neighbor fiber locations. The stresses in the nearest t)

neighbor fibers are non-uniform. However, based on
maximum values in the fibers, the stress ratio ato/" -
(Fig. 3) exceeds the levels required for GLS. atfiber Q
volume fractions f >_ 0.4. __

The solution for the semi-infinite crack with a 0

constant r sliding plane at the tip (Fig. 4) indicates 0o 0 0o' 0 o " o' oo' oos
two key influences of sliding 1l5]. (i) Sliding causes R.eive Disance tnra Cac. n- ,( I K)"

the a,- stress ahead of the crack to increase when the Fig. 4. The effects of a sliding plane on the crack tip field
sliding distance 6& is small. (ii) The stress concen- for a semi-infinite crack. The sliding length 6 is given by:
tration decreases toward zero as T -- 0. The transition 6 - 0.05 (K/W): x is the distance from the crack tip.
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Fig. 5. A finite element mesh in the vicinilt of the failed fiber

fraction and the Young's modulus of the fiber and The salient trends in a.. for the elasticali ho/ro-
matrix. E, and E,. respectivelyt. The matrix is con- geneous system are summarized in Figs 7-11. The
sidered to remain elastic. A finite element method is Ao:. stress concentration on the crack plane dimin-
used for the calculations. The calculations are con- ishes as ria, decreases (Fig. 7). such that the largest
ducted with the load transfer length prescribed by
equation (I) and by using sliding elements introduced
at the interface that satisfy e,. = r. when : _< 6, The T ( K h G( h
calculations are axisymmetric. with the mesh shown 0 0-"
in Fig. 5. Emphasis is given to the a:, x) stress on the 0
crack plane. : = 0. However. a-, is also calculated at
the interface of nearest neighbor fibers and compared
with T. This comparison addresses the incidence of
sliding at those interfaces. In some cases, (7,.(:) is
calculated at nearest neighbor fiber locations. 0 A I

For elastically homogeneous systems, the calcu- C (

lations explicitly refer to the hexagonal fiber arrange- 2,

ment shown in Fig. I. These results are presented
first However. when Eo E,. the annular con- - \

figuration depicted in Fig. 6 is used. The nearest and
next-nearest neighbor fibers are considered to be
located within annuli having the fiber modulus for ,-.

that location. Outside the second annulus. the
material is considered to be homogeneous and have . • -

the actual composite modulus.>

-...... _ -Fig 6 The configuration of annuli used for numerical
"tPoison's ratio is assumed to be the same for both. analis. vith E. > E,
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Aa•. (which occurs at x = 0) is only 1.03a, when 014 -

T aC=0.01. This stress concentration is below the
level at which local load sharing mechanisms are
expected to operate. Consequently. smaller values 0.12

of r crf are not considered. The effects of r on the
Ao. stress at the mid-point of the nearest neighbor 1 ,/.

fibers (Fig. 8) indicate the same characteristics found og ,
in the asymptotic solutions (Figs 2. 4): (i) Ac__ 0 00

as r- 0. Iii) a peak in Ao.- occurs in the range
ticrf=0.1-0.2 for typical f. (iii) at large sliding 0 0o6

stresses. Aa.. asymptotically approaches the penny-
shaped crack solution. 004

Evaluation of a,. at the interface of the nearest
neighbor fibers indicates that, in all cases (Fig. 9) 0.02

within the range. 0.01 < T.,rC< 1, a,- is smaller than .... ........

"t. Sliding oi these intcrfaces can .hus bi ntglec.ed - .

for the sliding law assumed in this study. A typical 0 1 2 3

variation in Ao:. along a nearest neighbor fiber Relative Distance, x R
(Fig. 10) indicates an essentially linear decrease, Fig. 7. Effect of z a, on the stress concentration. Aa.: (r). at

,7=0,
(a) (b)

0.20 
(b)

"1023 015-

0010

.2 .2E 0 0.10 E + -

0 
0
C.1

-( (023. E0IE~

0 .05 0.1 .15 0.2 0.25 0.3 0.35 0.4 0 0.5s 0.1 0.15 0.2 025 0.3 0 04

Relative Sliding Stress, T / of Relative Sliding Stress , -r i o
Fig. 8. Variation in the stress concentration at the nearest neighbor fibers with sliding stress for typical
fiber volume fractions, at several stiffness ratios: (a) maximum stress in the fiber, (b) average stress in the

fiber.
(a) (b)

-0.6 
-. (-0.3

-0.5 -0.25
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e 0.3 --0.15

*-0.2 -01

0 0
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Relative Distance From Crack Plane, z I R z / R

Fig. 9. Interface shear stress. *,. in nearest neighbor fibers. (a) rTo,= 0,03,f =0.5. (b) rar = 0.2,f= 0-5.
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between the maximum value at the crack plane non-hardening matrix, with a Mises yield criterion.
= 0) and zero at : :L . subject to the uniaxial yield strength. a,,. and
A comparison of the stres concentrations in the isotropic elastic properties. The results (Fig 13)

nearest and next-nearest fibers (Figs !I and 12) as a indicate that yielding increases the stress concen-
function of volume fracture gives an indication of tration on neighbonng fibers, consistent with the
how reduction in.f influences the stress concentration iriuence of a reduced matrix modulus. Further cal-
ratio, as well as the pronounced effect of rya, for culationm with plasticity would be needed to explore
values E 0.05. these effects in detail,

Calculations conducted with elastic mismatch
(EriEm > 1), summarized in Figs 8, 11 and 12 demon- 4. THE MECHANISM TRANSMON
strate that a reduced matrix stiffness invariably
increases the stress concentration in neighboring The preceding mechanics motivate estimates of
fibers. The effects are substantial, even at small survival probabilities that relate to the GLS - LLS
mismatches (Eu/Em =3), indicating the importance mechanism transition. A recent bundle model [7]
of matrix stiffness loss on the GLS -- LLS tran- has introduced some physically attractive concepts,
sition. Such stiffness loss may arise either becaue especially the number of fibers. Nr. that participate in
of macrocracking in CMCs [16, 17] or plasticity in the composite failure process, when GLS is violated.
MMCs [6, 8]. However, even when E ,/Em = 10, However, for this concept to be used. a -uniformly-
and f =0.5, the average stress (Fig. 8(b)J does stressed" zone, around a failed fiber, that embraces Nr
not achieve the level expected when all of the load fibers needs to be identified. Such a zone is not yet
from the failed fiber is transferred onto its nearest evident from the present solutions. Consequently, the
neighbor, A,, /or = 0.16. approach suggested earlier, based on the sequential

One calculation is conducted with plasticity failure of fiber rows, is further explored in order to
allowed in the matrix. The calculations are for a provide additional perspective.

(a) (b)

002
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Fig. 12. Stress ratio in nearest and next nearest neighbor fibers as a function of volume fraction.
(a) maximum stress. (b) average stress.

The concept is as follows. If the failure probability relative survival probabilities of fiber rows within 6
1.

of the nearest r.:ighbor fibers adjacent to the crack The definition of bR is critical. The following ration-
plane is high relative to that of the fibers elsewhere alization is used, with reference to Fig. 6. If the outer
in the composite. then a self-organized criticality "annulus" of next-nearest neighbor fibers, width 61t.
would be anticipated, whereby "coplanar" crack exhibits a higher failure probability than the inner
would evolve out of a single failed fiber. Then, annulus of nearest neighbor fibers, width 2s, then
a local load sharing mechanism of composite a well-defined crack-like criticality =nnot develop.
failure would obtain, perhaps characterized by a
resistance curve 16]. Conversely, if the survival prob-
ability of the nearest neighbors exceeds that of a 1 02
surrounding zone of significant size, a criticality is L
unlikely and a global load sharing failure mechanism 1 0o
would apply.

In order to apply this concept, two length scales V O
must be considered: (i) the dimension normal to the j
crack (z axis) wherein the stress within the nearest U ------------------------
neighbor fiber exceeds the applied stress. a(. (ii) The a

radius of the radial zone that experiences a significant U)
stress concentration, designated 6. The hypothesis -4
used here is that, at the small levels of /iar relevant "0
to the mechanism transition, since 6, > s. stress gradi- 0 02 Oi 0 0 0
ents in : are small' (Fig. 10), Consequently, the stress Reative Far Field Matrx Stress. ,a tOa
on the crack plane (: = 0) is used for analysis of the Fit. l3. Effect of matrnx yielding on the stress concen-

tration in the nearest neighbor fibers (ErE. = 3. f = 0.5,
1"Hence. the mechanism transition is not explicitly affected i r = 0 2): ao is the uniaxial yield strength of the matnx and

by 6,. a,. is the far field stress on the matrix.
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Instead, fiber failures are more likely to occur in other of 1o'A stiffness matrices caused b% non-hincarsties is
regions of the composite in which long lengths of in progress.
fiber are subject to a uniform stress. a,. For this case.
composite failure is likely to proceed by global load Acknowledgement. -.-This ,ork %a% supported b% the Office

sharing. ConsequentlN. the stress concentrations from of Naval Research through contract NiXKil4-Y{tJ-13(KXJ
"Provision of the ABAQL S finite element code bh Hibbiti.

Fig. I I ma, be inserted into equation (5) to provide Karlsson and Sorensen. Inc. of Prosidence. Rhode Island is
an assessment of the interface, fiber and matrix gratefull, acknowledged.
properties needed to assure GLS.
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ABSTRACT

Investigations of cracking in multilayered ceramic/metal composites are

presented. Two aspects are considered: crack renucleation across intact single metal

layers and subsequent crack extension. Crack renucleation criteria are determined and

compared with predictions. High-resolution strain-mapping techniques are employed

to determine the surface strain fields surrounding cracks. Good agreement is found

between these experimental measurements and the predictions of a small-scale yielding

model. Subsequent crack progression occurs either by the extension of a dominant,

nearly planar crack or by the formation of a zone of periodically spaced cracks. Both

patterns are analyzed. The dominant cracking behavior is found to depend on the

volume fraction and yield strength of the metal.

KJS 11/1119'2 2



1. INTRODUCTION

The macroscopic mechanical properties of layered metal/ceramic composites are

governed by the mechanisms of deformation and damage that occur upon loading.1- 6

Especially important is the manner in which cracks that first form in a brittle layer

communicate further damage to the neighboring layers. Two limiting responses have

been identified: global and local load sharing. 1 When global load sharing applies, the

stress redistribution caused by a crack results in a uniformly increased stress in all of the

remaining uncracked layers. Consequently, a straightforward stochastic approach can

be used to characterize the mechanical properties, leading to a damage mechanics

representation. Conversely, local load sharing results in a stress concentration around

an initial crack formed within one layer, which causes damage to progress laterally,

often as a dominant mode I crack. In this case, large-scale bridging mechanics is

appropriate. As yet, there is no fundamental understanding of the properties of the

layers and of the interfaces that govern the occurrence of these extreme behaviors (or of

intermediate mechanisms). The present article addresses the criterion that governs this

fracture mechanism transition.

A previous study provided some understanding of the stress fields around a crack

within a ductile-brittle layered composite.2 For a crack located in a brittle layer with its

tip incident upon a ductile layer (as illustrated in Fig. 1), two limits were identified: i) a

small-scale yielding (SSY) limit, wherein the plastic zone in the ductile layer is small

compared with the size of the crack in the brittle layer and ii) a large-scale yielding

(LSY), or shear lag (Sb) limit, characterized by a relatively large plastic zone. The SSY

limit exhibits relatively large stress concentrations and is expected to result in local load

sharing. The LSY limit is typified by much smaller stress concentrations and may allow

global load sharing. Therefore, investigation of these stress fields (including their

relationship with the cracking sequence) might provide insight into the transition in
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mechanisrn. The present study describes experimental approaches for measuring the

stress and dis-1acement fields around such cracks, and compares the results with

calculated stress fields.

2. EXPERIMENTAL

2.1 Materials

Metal/ceramic multilayers were produced by vacuum diffusion bonding

precleaned metal and ceramic sheets. Bonding was conducted at homologous

temperatures for the metal, T/Tm - 0.9, for - 24 h, with an applied compression

- 2 MPa, in a vacuum - 10-6 Torr. The composites werc repared from two grades of

aluminum oxide,* one of higher strength than the other, bonded to high purity

aluminum or copper. These systems have strongly bonded interfaces. 3 The properties of

the constituents are summarized in Table I. The thicknesses of the layers, as well as the

ratios of the metal thickness, hm, to the ceramic thickness, hc, were varied, but in all

cases, a total multilayer thickness of 4-8 mm was used. The range of systems and

diffusion bonding conditions are summarized in Table 11. Some specimens with

relatively thick (2 mm) A12 0 3 outer layers were used in order to establish a well-

developed crack prior to testing (Fig. 2(a)).

2.2 Measurements

In situ observations of crack growth in the multilayered composites were obtained

on beam specimens with notches cut to a depth of - 50% of the thickness of the outer

ceramic layer with a diamond saw. The specimens were polished optically flat on one

face to allow observations of crack growth. Cracks were initiated from the root of the

"Coors ADS-995, which is relatively pure and has high flexural strength, and Coors ADS-96, which is
less pure and has lower strength.
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notch and then extended stably to the interface using a loading fixture attached to the

stage of an optical microscope (Fig. 2(a)). Most tests were done in ambient air. However,

to examine environmental susceptibility, a few tests on the A120 3 /Al materials were

done in dry N 2. High magnification micrographs were obtained from the crack tip

region during loading. In all cases, cracks were oriented with the crack plane

perpendicular to the layers (Figs. 1, 2) and the loads were applied in four-point flexure.

Typical specimen dimensions were 1 x 8 x 30 mm, with the inner and outer loading

point separations being 10 and 25 umm, respectively. The nominal mode I stress intensity

factors KI were evaluated from the measured loads, crack lengths and specimen

dimensions by using the calibration for an elastically homogeneous beam (Section 3.1)7

Optical micrographs of the crack tip region were analyzed to determine the

opening displacement, 80, of the cracked ceramic layer adjacent to the metal, the strain,

yy, in the neighboring ceramic layer, and the plastic zone size, k p (Fig. 1). This was

achieved by measuring differential displacements of corresponding image features in

pairs of micrographs: one taken at zero load (the reference) and the other obtained

under load. Two image analysis techniques were used: stereo viewing of pairs of

micrographs 8 and a computerized image comparison procedure 9 (HASMAP-High

Accuracy Strain MAPing). The latter technique determines full-field maps of in-plane

displacements, which can be differentiated to produce the in-plane strain fields. Since

both methods measure differential displacements, their sensitivity is much greater than

the point-to-point resolution of the micrographs.t

Strain distributions were also measured using high-resolution moir6

interferometry. The procedure involved depositing a diffraction grating on the

specimen surface and forming a moir6 interference pattern between the specimen

grating and a fixed reference grating during loading of the specimen.10 ,11 The moir6

t) isplacement resolution of 10 nm is achieved from optical micrographs.
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image consists of fringes which define contours of constant displacement, with the

increment between fringes being equal to one-half of the grating period. A fringe

multiplication technique was used1 I to increase the differential displacement resolution

to 36 nm/fringe. Interferographs were obtained in two orthogonal directions, x or y

(Fig. 1), by using two interpenetrating diffraction gratings oriented at 900. The Cyy

strains were determined by measuring fringe spacings in the y direction, along a line

within the ceramic layer, 5 p.m from the interface. The ayy (y) stress was then estimated

by using the plane stress relation,12

(1-v 2 )a,(y) = E[e,(y)+ve:,(y)j (1)

where V is Poisson's ratio and E is Young's modulus of the A120 3. For the present

estimate, it was assumed that Ex (y) = 0.

In materials with relatively thick A120 3 layers (> 480 Jim), average strains, gyy,

were measured with strain gauges, over an area = 0.6 x 0.25 mm.

The strength distribution of the higher strength alumina was measured using four-

point flexural loading of specimens cut from as-received plates (680 g~m thick) and from

plates that had been surface-ground to reduce their thickness to 450 g.m. The strength

distribution of the lower strength alumina was also measured using four-point flexural

loading of specimens cut from as-received plates (2 mm thick). The cumulative

probability of failure, (D(S), was determined (using order statistics) as a function of the

nominal strength, S, for both types of alumina, by using the volume flaw solution (see

Section 3),13

- 1n[1- 4(S)] = (S/So)m(Lhw/Vo)(m + 2)/4(m + 1)2 (2)
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where L is the test span, w the specimen width and h the plate thickness, with Vo being

a reference volume (taken to be 1 m3 ) and So and m the reference strength and shape

parameters, respectively.

3. RESULTS

3.1 Crack Growth

In multilayered composites with low volume fractions of metal (fin < 0.3), a single

crack formed in each ceramic layer ahead of the notch during fracture oi precracked

beams (Fig. 2(b)). No interfacial debonding occurred in any of the composites, during

either crack renucleation or subsequent fracture, despite extensive plastic stretching of

the metal layers (Fig. 3). i-urthermore, the cracks renucleated sequentially in adjoining

layers on nearly the same plane as the precrack. The damage is thus viewed as a

dominant mode I crack, with the crack tip taken to be the edge of the cracked ceramic

layer furthest from the precrack. A nominal stress intensity factor KI can then be defined

as the loading parameter.

The growth of mode I cracks in systems containing ceramic layers of thickness

(hc = 450-680 9m) greater than that of the metal layers (hm = 8 - 250 gJ.m) may be

represented by resistance curves (Fig. 4). Two values of the stress intensity factor

characterize crack growth: (i) that needed for initial crack renucleation across intact

metal layers, KN, and (ii) that needed for subsequent crack growth, KR. Initial crack

growth is controlled by crack renucleation in the ceramic layer ahead of the crack tip,

whereas KR increases during subsequent crack growth because of the bridging effect of

intact metal layers in the crack wake. For a given material combination and

environment (Fig. 5), the renucleation resistance increased with the thickness of the

metal layers. The values of KN ranged between 5 and 17 MPa "•m-, in all cases, higher

than the fracture toughness of alumina 14 (Ko - 3.5 to 4 MPa N/-m-) (Fig. 5(a)). The values
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of KN were also systematically higher in Cu/A120 3 composites containing the higher

strength A120 3 than in equivalent composites with the lower strength A120 3 (Fig. 5(b)),

Testing of the Al/A120 3 composites in air resulted in lower values of KN than testing in

dry N2, implying a sensitivity of crack renucleation to moisture (Fig. 5(c)).

Finally, the locations at which the cracks renucleated were usually offset from the

crack plane in the last cracked A1203 layer. The offset distances, A, measured for

composites with metal layers of various thicknesses are shown in Fig. 6 as a single

probability distribution, plotted as a function of A normalized by the thickness, hm, of

the metal layers. The results indicate that A scales with hm.

3.2 Crack Tip Opening Displacements

The stationary crack tip opening displacements, 50, were determined by

stereoscopy from in situ optical micrographs obtained before cracks renucleated in the

ceramic layer ahead of the precrack. For each specimen, So was found to increase with

increasing KI, following the proportionality, 80 0c K2 (Fig. 7(a)). This proportionality

suggests that the data may be compared with the solution for a homogeneous metal in

the small-scale yielding limit, given by,15,16

so,= --- 1 (3)

Emao'

where Em and (To are the Young's modulus and uniaxial yield strength of the metal and

H is a non-dimensional parameter. For homogeneous metals, H depends only on the

work hardening coefficient, and typically has values of 0.48 for aluminum and 0.18 for

copper.16,17 It is apparent from Fig. 7(b) that smaller values of H obtain for all of the

layered materials. Moreover, the magnitude of H decreases with decreasing metal layer

thickness (Fig. 7(b)) and, at given layer thickness, is lower for the multilayers containing

KIS i ii I/ 8



copper than for those containing aluminum, consistent with the trend in H for the

homogeneous metals.

3.3 Strain Measurements

The average strains, eyy, measured using strain gauges in the A120 3 layers directly

opposite the precrack increased with increasing KI (Fig. 8). Both the magnitude of the

strain and the rate of increase in strain, at given KI, increased with decreasing metal

layer thickness.

A moird interference micrograph showing fringes of constant displacement in the

vertical (y) direction, obtained from the region surrounding a crack tip in a multilayered

Cu/A120 3 composite, is shown in Fig. 9. The stresses, (Yyy, along the edge of the A120 3

layer ahead of the crack tip, evaluated from the micrographs (by using Eqn. (1) ) are

plotted in Fig. 10, along with theoretical predictions to be discussed in the following

section. The data obtained at each of three values of the applied stress intensity factor

indicate that local stress concentrations exist ahead of the crack tip, with peaks offset

symmetrically by approximately 50 gm from the crack plane. The magnitude of the

peak stress increases linearly with KI. The strains, Eyy, in the metal layer displayed a

similar distribution as those in the intact ceramic layer, but were much larger in

magnitude with a plastic zone that extended beyond the field of view (± 350 ýLrn).

The distribution of shear strains (as determined by HASMAP) around a crack in

another Cu/A120 3 multilayered composite with thicker copper layers (130 gim) is

shown in Fig. 11. A zone of localized plastic strain within the copper layer ahead of the

crack tip is evident. The zone extends to the side of the crack to a distance

approximately 7 times the metal layer thickness (I p- 1 mm).
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3.4 Multiple Cracking

In composites with larger volume fractions of metal (fm > 0.7), multiple cracks

formed within the A120 3 layers (Figs. 2(c), 2(d)) after initial renucleation from the

precrack. Furthermore, in multilayers with the highest metal volume fraction

(fo = 0.85, Fig. 2(d)), lateral spreading of multiple cracks within the same brittle layer

often occurred in preference to forward progression of the main crack. In all cases, the

cracking eventually saturated within a damage zone - 2 mm in total width

(approximately twice the width of the region of the specimen containing the thin

ceramic layers, Fig. 2(a)), with the distribution, ( m, of crack spacings shown in Fig. 12.

It is evident that the median crack spacing at saturation, is, increases as the alumina

layer thickness increases.

3.5 Alumina Strengths

The strength distributions measured on the as-sintered and surface-ground

specimens of the higher strength A120 3 were indistinguishable (Fig. 13(a)), suggesting

that the strength is controlled by volume flaws.t The data from both types of specimens

were combined, and the magnitudes of the shape parameter, m, and the reference

strength, So, were ascertained by fitting Eqn. (2) to the data, giving

So (Vo) 1/m = 37 MPa-m 3/m. The corresponding median strength is, Sm = 460 MPa.

For the lower strength A120 3 (as-sintered), So (Vo)l/rn = 20 Mwa-m 3im and the median

strength is, Sm = 380 MPa (Fig. 13(b)).

t Although it is possible that the surface flaw distributions were the same within the measurement
accuracy, it is considered unlikely.
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4. COMPARISON WITH MODELS

4.1 Crack Tip Stresses

Two limiting solutions have been identified for the stresses, 0yy (x, y), within

intact brittle layers ahead of the crack tip in layered metal/ceramic composites. In the

small-scale yielding (SSY) limit, the stresses along the crack plane closely approximate

the elastic solution,1

Yxo)- K,-2_x(x th,.) (4)

where KI is computed for an elastically homogeneous medium. This result holds even

when the plastic zone extends both through the metal layer and laterally up to a

distance several times the metal layer thickness. The corresponding stresses in the intact

ceramic layer alongside the the metal/ceramic interface (x = hm) are given by,18

, (5)

- f(e)

where r and 0 are the radial and angular coordinates from the crack tip (Fig. 1),

2 2~

0= arctan(jhzJ 
(6

An estimate of the size of the slip zone, obtained by equating oxy to the shear yield

strength of the metal (with K1 = 0Y. I in Eqn. (5) ), is, 2
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eP/ao = 0.61(a../ 0°)2

where GT is the applied tensile stress and ao is the length of the precrack. For larger slip

lengths, corresponding to large-scale yielding (LSY), a finite element analysis has been

used to evaluate the stresses. 2 The peak stress in the ceramic layer is, 2

Oy),(h.,0) = [y 1-+ (8)lr In-,;/h.)I

The distribution of y stressets in the intact ceramic layer for 0.05 _Ž (y/ p) -: 1 is,2

ayycy_ 1- -5.8(L')Q 1f(~h) (9)

where Q is a dimensionless parameter and w is the specimen width. 2 The

corresponding slip length is,

IP/a. = Z a-./a. (10)

The predicted stresses, given by Eqns. (5) and (9), are compared with the moir6

interferometry data in Fig. 10. The SSY predictions agree reasonably well with the

experimental results, including the locations of the peak stress which are offset from the

crack plane. Conversely, the LSY solution substantially underestimates the magnitudes

of the stresses and fails to predict the location of maximum stress. Additionally, the SSY

predictions are compared with the strain gauge measurements, made over a range of

loads (Fig. 8; Appendix A). Again, the SSY predictions agree reasonably well with the

data.
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The stress distributions at x = hm in the ceramic layer ahead of the crack tip can be

used in conjunction with the measured strength of the ceramic to predict failure of the

ceramic layer and thus, the renucleation stress intensity factor, KN. A simple estimate is

obtained by equating the stress (at x = hm, y = 0) from Eqn. (5) to the median strength,

S, of the A1203 layers.1 For small-scale yielding, this gives,

KN = S.IF i,• (U1)

The prediction of Eqn. (11), with Sm = 460 MPa (from Fig. 13), agrees reasonably well

with measured values of KN for materials with metal layers of various thicknesses

(Fig. 5(a)). Furthermore, the decrease in KN in multilayers fabricated from the lower

strength alumina (Fig. 5(b)) also is consistent with the predicted decrease in KN

resulting from a lower Sm. These correlations with the SSY predictions apply even

though the normalized plastic zone size extends up to i p/ao = 2 (Fig. 11).

Consequently, the SSY stresses seemingly apply over a wider range of plastic zone sizes

than had been expected, 2 although these findings are consistent with recent

calculations. 19

4.2 Multiple Cracking

4.2.1 Transition From Single to Multiple Cracking

The criterion for the transition from single to multiple cracking is a key design

parameter for this class of multilayered composites. Since the present experiments

indicate that SSY conditions dominate, this transition does not appear to be related to

the onset of LSY conditions. Instead, it is suggested that the transition occurs when new

SA more rigorous analysis would entail statistical analysis of fracture, using the measured strength
distribution of the A1203 layers and the nonuniform stress field of Eqn. (5). Preliminary calculations
indicate that the present simplification does not result in significant error.
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cracks are formed in the A12 0 3 layers in the crack wake. For wake cracking to occur

preferentially, the local stresses in the wake must exceed those ahead of the crack, as

well as reach the fracture strength of the ceramic layer. These stresses are influenced by

two contributions: the K-field of the main crack tip and the bridging tractions exerted by

the intact, but plastically stretched, metal layers. The stresses associated with the K-field

are always smaller in the wake than ahead of the crack tip. However, the contribution

from the bridging tractions can be sufficient to make the wake stress larger than the tip

stress. This contribution depends on the magnitude of the bridging tractions, T, the

relative area over which the tractions are applied (the volume fraction of the metal) and

the absolute thicknesses of the individual layers. The magnitude of T is known to

depend on the metal yield strength and the local crack opening.20,21

A simple model for wake cracking, involving a primary crack traversing three

ceramic layers and partially bridged by two intact metal layers, is analyzed in

Appendix B (Fig. BI). Approximate analytical solutions for the wake stresses as a

function of distance from the crack plane, for this particular geometry (Fig. B2), indicate

that the stress increases from zero at the crack faces to a maximum at a characteristic

distance from the crack plane, and then decreases. The characteristic distance could

dictate the crack spacing within the zone of multiple cracking. The analysis reveals that

as the volume fraction of metal increases, the location of the larger peak stress changes

from the brittle layer ahead of the crack tip to the crack wake, provided that the metal

flow strength is sufficiently high (Fig. B2). This trend is qualitatively consistent with the

observations in Section 3.

4.2.2 Multiple Crack Density

An important measure of the extent of crack damage relevant to a damage

mechanics formulation is the crack density, p. No attempt is made here to understand

the evolution of p. However, some appreciation for the applicability of damage
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mechanics may be gained by comparing the measured crack spacings with values

predicted by fragment length analysis.1 Stochastic analysis of multiple cracking in

bimaterial systems with sliding interfaces1 indicates that the crack density saturates and

that the saturation density, Ps, is related to the interfacial shear stress, t, as well as a

characteristic ceramic layer strength, Sc, through the relationship,

P.= X(m),r/(hSj) (12)

where X is a dimensionless coefficient of order unityl and, for a well-bonded interface,

¶ is the shear flow strength of the metal (C ao/1-). The characteristic strength, Sc

(Appendix C), is,1

S' = (XrVoSo/h, (13)

Therefore, Eqn. (12) can be written,

P. (;V rn h,(--) wX (14)

With the relevant parameters for the A120 3 /Al system (SoV 0
1/m = 37 MPa.m 3 /m,

T - 30 MPa, X (m = 8) - 1.6), the saturation crack spacings for multilayered

specimens with 45 gjm and 125 gm thickness alumina layers are predicted from

Eqn. (14) to be - 0.7 mm and - 1.6 mm, respectively. Although these are larger than the

measured spacings, they are in the same range and they scale correctly (Fig. 12). A

damage approach based on the stochastics of the brittle layers, coupled with interfacial

slip, thus appears to be a potentially viable procedure for characterizing the properties

associated with multiple cracking.
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5. CONCLUSIONS

Crack growth and damage accumulation in strongly bonded ceramic/metal

multilayers have been investigated, with particular emphasis on the criterion for crack

advance, as well as on crack extension patterns. Crack renucleation beyond intervening

metal layers is found to be governed by the small-scale yielding stress field. Plastic flow

within the metal layers exerts a minimal influence, despite clear evidence of plasticity in

the metal layers prior to crack renucleation. The metal layers therefore act simply to

separate the intact ceramic layer from the crack tip by a distance corresponding to the

metal layer thickness. This behavior leads to a simple inverse-square root dependence

of the crack renucleation resistance, KN, on the metal layer thickness, hm. These

conclusions establish that crack renucleation results from a significant stress

concentration associated with cracks in adjacent brittle layers.

Damage develops either as a dominant crack, or as periodic cracks, depending on

the volume fraction, layer thickness and yield strength of the metal. As the volume

fraction of metal increases, at constant ceramic layer thickness, the stresses in the crack

wake increase, whereas the stresses in the intact layer ahead of the crack tip decrease.

This trend in stress leads to a transition in cracking mechanism with increasing volume

fraction of metal, whenever the metal layers have sufficiently high yield strength.

Specifically, for low metal volume fractions, mode I extension of a primary crack occurs,

whereas for high metal volume fractions, periodic multiple cracking occurs.

When multiple cracking dominates, a damage mechanics approach for

characterizing properties appears to be viable. To assess the validity of such an

approach, a simple model has been used to relate the saturation crack density, Ps, to the

intrinsic flow properties of the metal, the strength characteristics of the brittle layers and
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the geometry of the multilayers. The predictions of the model are qualitatively

consistent with the measured trends.
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TABLE I

Properties of Constituents

Thermal Expansion Young's Uniaxial Yield Work Hardening
Coefficient Modulus Strength Coefficient

Constituent t( (x1O06C-1) E (GPa) (70 (MPa) n

A120 3  8 380

Al 25 70 50 0.2

Cu 17 120 70 0.3
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TABLE II

Summary of Diffusion Bonding Conditions

Bonding Bonding Bonding A120 3  Metal

Temperature Pressure Time Thickness Thickness

Multilayer (0C) (MPa) (h) (Jim) (gm)

620 1.5 20 45 250

680 8, 25, 50, 100, 250

AI/AJ20 3

655 2.6 20 125 250

680 8, 25, 100, 250

Cu/A120 3  940 1 24 480 25, 130
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APPENDIX A

Comparison of Predicted Stresses with Strain Gauge Measurements

The strain gauge data provide a measure of the average stressOyy, within the

region bounded by the strain gauge, i.e., hm < x < h, + d, where d is the width of the

strain gauge. For the stress field given by the small-scale yielding Umit,2

1 h ý+d K
dx, (Al)YY d

Integration gives,

K (ý ýh., h

d K (A2)2 dd 42 d

where

d ]2 
(A3)

A-rh.. + d - 4h, j

Equation (A2) is compared with measurements for materials with aluminum layers of

different thickness in Fig. 8.
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APPENDIX B

Multiple Cracking Analysis

The mode of damage evolution (single or multiple cracking) depends on the

relative magnitudes of the stresses in the ceramic layers ahead of and behind the crack

tip. These depend, in turn, on the thicknesses of the metal and ceramic layers, the crack

length, the strength distribution of the ceramic, and the flow properties of the metal. To

assess the effect of changing the volume fraction of metal, these stresses are estimated

for the specific composite geometry shown in Fig. B1.

The stresses were estimated by regarding the effect of the intact mc:al bridging

ligaments as crack closure tractions, T, acting on the crack faces (Fig. BU). In general, the

magnitude of T depends on the local crack opening, the flow properties of the metal and

interfacial debonding. However, for the purpose of illustrating the transition in

behavior, T is taken to be a constant (T = 1.5 0.,) in the present analysis. Assuming that

the stress concentration due to the crack tip is given by a K field, and assuming elastic

homogeneity, the crack tip stresses are,18

Ktp
CO - PAe) (BI)

where Ktip is the local stress intensity factor given by,20

K = 2 \[-Ji(a-G.- T(X))dX (B2).,o • 2(2



where X = 1 + x/a (Fig. B1). The stresses in the crack wake along the line,

x = - (hm + he), are given by the superposition of two components, one due to the crack

tip stress concentration, Eqn. (B1), and the other due to the traction T: 18,22

Kp

K= f(O) + g(f.,y/h,, 0,T) (B3)

where f(s) is given by Eqn. (5) and the function g(fr, y/hm, 0, T) accounts for the wake

stresses arising from the crack bridging tractions applied to the surface of an elastic half

space over the intervals, - 2(hc + hm) < x < - (2hc + hm), and - (hc + hm) < x < - hc,22

g(fIm, r, 8, T) = T(a, + a2 +sina, +sin a 2)/f (R4)

with,

a,= arctan(Ž.L-3

aE2 = arctan Cm h+hc 1 arctan(.!h,'
y )

with hn, hI, and y defined in Fig. 1.

The stresses in the ceramic layers ahead of the crack tip (OA) and in the crack wake

(OB) are plotted as a function of distance from the crack plane in Fig. B2 for various

values of fm. The stress distributions at both locations pass through a maximum at a

distance from the crack plane of several times ht. At small values of jM, the maximum

stress is larger ahead of the crack than in the wake, thus favoring growth of a single

crack. Conversely, at large fm, the maximum stress is larger in the wake, leading to
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multiple cracking. The transition occurs at fm - 0.6, for the particular value of T and

the crack and layer geometries chosen here, for illustrative purposes.
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APPENDIX C

Characteristic Ceramic Layer Strength

For a power law strength distribution in the brittle layers, the fraction, P, of flaws

that can cause failure at stress S in a volume V is given by,

P(V,S) = -(S/Se) (Cl)
V.

At the poin' of crack saturation,1 S =So

P(V5,,S ) = V o (S /S o) - I (C2)

where Vs is the volume of material between the cracks. Using Eqn. (12), Vs can be re-

expressed as,

v.= hCSw (C3)

Combining Eqns. (C2) and C3) yields,

Se = - '. S (C4)
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FIGURE CAPTIONS

Fig. 1. Schematic illustrating the crack geometry and the parameters measured in the
experiments.

Fig. 2. a) Schematic illustrating the typical specimen and loading geometry. b), c) and
d) Cracking patterns determined by optical microscopy: b) single crack in a
system with AI/480 gim A12 0 3, c) multiple cracking in composites with
Al/125 gim A12 0 3 and d) A1/45 Jgm A1203. Arrows indicate the crack
locations. All three composites contained 250 pim thick Al layers.

Fig. 3. Scanning electron micrographs of fracture surfaces of A1/A120 3 multilayers,
showing a single aluminum layer sandwiched between two alumina layers.

Fig. 4. Measured crack growth resistance, KR, as a function of crack extension, Aa, for
several multilayered composites.

Fig. 5. a) Crack renucleation stress intensity factor, KN, as a function of metal layer
thickness, hnv for a) composites fabricated from the higher strength alumina
and tested in an air environment. Also shown is the SSY prediction for a
median ceramic strength, Sm = 460 MPa. b) KN for copper/alumina
composites fabricated from either the higher strength or lower strength
alumina and tested in an air environment. Also shown are the SSY predictions
for KN for median ceramic strengths of, Sm = 460 MPa and Sm = 380 MPa.
c) KN for aluminum/alumina multilayers fabricated from the higher strength
alumina tested in air and dry nitrogen.

Fig. 6. Cumulative distribution, (Dd, of the offset, A, in crack renucleation location
normalized by the metal layer thickness, hm, for multilayers with a range of
metal layer thicknesses.

Fig. 7. a) Crack tip opening displacements, 80, as a function of the square of the
applied stress intensity factor, K2, for several multilayer systems. Also shown
is the prediction (Eqn. 3) b). The non-dimensional parameter,
H = 8 . Em;o/K' as a function of inverse metal layer thickness for several
different multilayer systems.
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Fig. 8. Average stresses, bry, in ceramic layers directly opposite the crack determined

with a strain gauge, for several multilayers. Also shown are the predictions for
dyy from Eqn. (A2).

Fig. 9. High-resolution moire interferograph of the crack tip region in a Cu/A120 3

multilayer when subjected to an applied stress intensity factor of

KI = 7.7 NPa'lm. Each fringe represents a contour of constant differential

displacement of 36 nm in the vertical direction (y-direction).

Fig. 10. Stress distributions, ayy (y), obtained by moir6 interferometry at three loads

(KI = 5.1, 6.4 and 7.7 ra4_m_ ). Comparisons with SSY and LSY predictions

are also shown.

Fig. 11. Contour map of the in-plane shear strain distribution, exy , measured by

HASMAP just before crack renucleation in a copper/alumina multilayer. The

contour intervals represent a strain of 6 x 10-4.

Fig. 12. Distribution, (Dm, of crack spacings, at saturation, from several multiply

cracked aluminum/alumina specimens containing 45 g.m and 125 pm thick

alumina layers with 250 pm thick aluminum layers.

Fig. 13. Cumulative failure probabilities a) for plates of the higher strength A120 3 in

the as-received and machined conditions, and b) plates of the lower strength

alumina in the as-received condition.

Fig. BI. Schematic of the crack configuration analyzed in Appendix B.

Fig. B2. Approximate analytical solutions for crack tip and crack wake stresses for the

crack geometry shown in Fig. B1 with various volume fractions of metal, fro,

and with bridging tractions taken to be T = 1.5 Y.-.
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ABSTRACT

LaveredŽ materials comprised of one brittle and one duc:.1e c-:•utn: ?,\'1:o,,

gzrowth characteristics that depend on the sequential renuceation or ,ra-ks :ý eac

brittle laver. An analysis of the problem is presented with two diierent rnterace

responses. One for a well-bonded, slipping interface and the other for an interface tha:

debonds. It is shown that either slip or debonding enhance the fracture resistance, with

debonding being the more effective. The analysis is compared with experimental results

for several layered systems.
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1. INTRODUCTION

Nanoscale and microscale layered materials can exhib:: unpr'cede:te. .- cc>:.::a.

property profiles: stiffness, tensile strength, notch strength, cr7ee strengt.-a.

resistance, etc. Furthermore, possibilities for spatial tailoring exist, especiall w her t:,:

materials are produced by vapor deposition. Alternating layers of brittle and diuc:iie

materials have particular interest, because the disparate properties of the consttue.nts

provide the ideal opportunity for achieving novel property profiles. Among thls group,

are metal/ceramic and metal/intermetallic systems. Such materials provide a rocus for

the present article.

A substantial theoretical and experimental background relevant to layered systems

of this type exists in the following fields i) pearlite, 1 ii) ceramic fiber-reinforced

metals, 2,3 iii) metal-toughened ceramics 4 ,5 and intermetallics. 6-9 However, some unique

crack growth features expected in layered systems are emphasized in this study The

objective is to provide a mechanics framework for predicting the crack growth resistance

of ductile/brittle layered materials, in terms of constituent material properties

(including the interfaces), as well as the laver thicknesses. Two predominant interface

responses are considered. a) A well-bonded interface subject to slip by plastic flow in

the metal. b) An interface that debonds and splits in a controlled manner.

2. EXPERIMENTAL BACKGROUND

Experimental results on crack growth have been presented for layered

metal/ceramic and metal intermetallic systems produced using a variety of processing

techniques: diffusion bonding (DB),10,1 1 directional solidification (DS), 12 thermal

processing (TP) 13 and physical vapor deposition (PVD).1 4 However, different length

scales are involved. Diffusion bonded systems have laver thickness, h 5 20 Lim: DS
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.arira!.s have h T im. TP M aterAals have h i mi" an," PVD 1 :a7: ma

0.01 - I ý1m. Experimental studies conducted on these systelms a,,'d".e.:

existence of a major fracture mechanism transition The tweo +ac:ure echa-.:•m:'I • ar:,

Class I behavior dominated by a single crack. ii) C~ass 11 behavior invvinc, :':c

microcracking. The conditions that dictate the transition between these mechanism:

have not vet been explicitly delineated. Nevertheless, it is apparent from the

experiments that Class I behavior is most likely when both the metal content is

relativelv low and the layers are relativelv thick. 10 This behavior is emr'-..pasiz.ed In the

present article (Fig. I).

When the metal layers retain good ductility through processing, plastic stretch of the

metal layers accompanies crack growth, resulting in a fracture surrace morphology

having the characteristics depicted in Fig. 2. Notably, the metal layers rupture along a

ridge.10 When this occurs, without interface debonding, crack growth is subject to a

resistance curve having the characteristics indicated on Fig. 3: i) An initiation resistance,

K\N, exceeding that of the brittle layer, KB, followed bv a rising resistance. ii) When the

metal lavers are thin (hm < 1 gim, where hm is the metal laver thickness), a steadv-state

ýrac:ure resistance, Ks, is reached. iii) Thicker metal layers (hm > 10 ..tm) may result in a

continuously rising resistance caused by large-scale bridging (LSB). 15-17 Generally, both

KN arn Ks increase as hm increases (Fig. 4):10 Ks also increases as the metal yield

strength (Yo and the metal volume fraction, fro increase.

Interface debonding and/or misaligned lavers result in resistance curves having the

same qualitative features, but subject to quantitative differences. Usually, interiacc

decohesion elevates both KN and K_, but the fracture morphology is more intricate 12

(Fig. 5). Misalignment introduces an additional level of complexitv though effects on

crack path, on crack trapping, ligament formation, etc. 13,18,19 (Fig. 6). Notably, a crack

may extend along a low fracture energy plane, within a colony, having layers oriented

normal to the loading axis. It then encounters a colony with obliquely oriented laver

- s6 "2 92 -



planes. At this encounter, the crack is arrested and induces a series of deCohe51cM afl

deiormation events that dictate the subsequent beh avior. 13, 1S.1

3. THE MECHANICS OF LAYERED MATERIALS

Seine basic, analytical results for cracks normal to the interfaces in elastically

homogeneous bodies are reviewed, before presenting numerical results that address

specific issues. Asymptotic solutions for semi-infinite cracks arrested at an interface

provide the information summarized in Fig. 7.20 The normal stresses, a', in the brittie

layers ahead of the crack front are important, since these layers are susceptible to the

events that result in macroscopic crack growth. The calculations show that yielding in

the metal layer at the crack front has minimal effect on a *, except for very low values of

yield strength, ao (Fig. 7a). The essential non-dimensional parameter is

0 = (2)

where K is the stress intensity factor. Notably, reduced values of &* only arise when

Q2 < 0.02; moreover, when i! is small, the following limit must obtain: a -+ 0 as Go -4 0.

When the interfaces decohere, the normal stress, &" ahead of the crack can be

dramatically reduced20 (Fig. 7b). In particular, there is a strong influence of the

decohesion length L on &*, when L/hm exceeds - 3. Indeed, when L/h, = 10, a;' is

about half the value that obtains without splitting. Furthermore, ° -4 0 when L/h .- -,

and is negligibly small, (< 0.01) when L/hm > 30. Consequently, splitting has a

considerably larger effect on a' than slip.

To address effects of crack size on crack growth, numerical results for both splitting

and slip have been obtained using finite element procedures with elastic homogeneity

assumed. The finite element mesh is depicted in Fig. 8. For calculations with splitting,
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he sr�-it length L is prescribed. When sli• occurs, tihe s'ear -,-e-- G; on :fe .:eac

not allowed to exceed the shear strength, T = 07(,,A 3 Thi- modei -

efect of yielding in the metal layers, The numerical results o tairned .K, bo:n

mechanisms (Fig. 9) reveal appreciable effects of crack size. The trend is tor o' to

increase as the crack size decreases.

In some cases, the crack does not extend. Instead, splitting occurs ahcad4 o( the

(Fig. 6), resulting in ligament formation. This process is governed by the Y,, stress

Variations in this stress with distance from the crack front (Fig. 10) indicate a maximum

This maximum occurs at a distance ahead of the crack = 2L.

4. CRACK GROWTH PREDICTION

The preceding mechanics must be coupled with a crack growth criterion in order to

predict the crack growth resistance. It has been proposed that the RKR criterion 21 is

most appropriate when layer cracking is the operative mechanism. This criterion states

that fracture proceeds when O" attains the fracture strength S of the brittle laverst The

magnitude of the tensile stress at which cracking occurs in the brittle laver is subject to a

mechanism transition. When the layers are sufficiently thick that the fracture flaws are

smaller than the laver thickness, the laver strength, S, is flaw controlled.10 In this case, S is

related to the tensile strength of the material (as qualified by statistical issues associated

with the stress gradient and the laver thickness). When the layers are thi.,, relative to the

flaw size, the layer strength is controlled by tunnel cracking.2 2 For this cracking mode,

the fracture toughness and the laver thickness have a dominant influence on S (Fig. 11).

The strength controlled by tunnel cracking is given by,

SConsistent with the behaviors found for Fe/Fe3C materials.`','
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where hb is the thickness of the brittle material and 1 is a non-dimensional pararm',,e: ,:

order unity that depends in the extent of debonding and slidingcA

5. COMPARISON WITH EXPERIMENTS

The preceding calculations can be compared with experiments in which explicit

measurements have been made of the toughness of the brittle constituents and the

initiation toughness of the layered system. Such results exist for the three 5ystems

summarized in Table I, as illustrated in Fig. 3. In other layered materials, inelastic

behavior in the more brittle constituent (e.g., twinning in TiAI) 13 ,24 invalidates direct

comparison with the present calculations.

Inspection of the results reveals that the initiation toughness KN is relatively larger

for systems that exhibit interface splitting (NiAl and TiAl), in qualitative accordance

with the calculations. Furthermore, explicit comparisons can be made for each material.

i) In A20 3 /Al and A120 3 /Cu, there is no interface debonding 10, 25 (Fig. 2). Moreover,

for the systems tested, the A1203 layers are relatively thick and have fracture properties

in the flaw controlled regime. Using independently measured value of the ceramic

tensile strength,t0 S, and metal yield strength, (70, a comparison of the predicted and

measured values of initiation toughness is shown in Fig. 4, for a range of metal

thicknesses and volume fractions. 10 The good correlation validates the strength-based

(RKR) approa.ch, 21 at least when the interface is strongly bonded. ii) The NiAl/Cr(Mo)

system exhibits profuse interface splitting (Fig. 5).12 However, not all interfaces are

susceptible to splitting. When splitting occurs, the split lengths are appreciably larger

than the layer thickness (L/h = 10). Moreover, the thin intermetallic laver thickness

dictates that fracture proceed by tunnel cracking, such that (Eqn. 2) applies. Predictions

, ,27



are made both with and,, without -a-;n, an &dcated en Fl 2. The ce:re:o:-

e\:eriment is indicative of a predomInan, role of snpii -nterace.-, 1-, F0o tbit :A'!\

system, the TiAl is relatively thick and is expected to be rn ,the £>w cer:. :

re-ime.111, Interface sz:ittin• is also evident :n thissystem (1..ih - 2". T!wee er

independent measurements of tensile strength for TiAl are not available.

The calculations assist in the interpretation of a splitting phenomenon found in

TiAI/Ti 3AI with a lamellar or layered colony microstructurel3 . 15J' (Fig t). In th.s

material, periodic splits occur where the crack encounters a colonv with the layers

oriented normal to the crack plane. There is no coplanar cracking of the TiAI, ' vers PTe

splitting is attributed t-V the oa stress and indeed, occurs where this stress has a

maximum, at x/L 2 (Fig. 10). However, a criterion for predicting the onset of periodic

split cracking would require an in-plane strength property for the TiAl layers (or the

TiAI/Ti3 AI interface), yet to be identified.

6. IMPLICATIONS

The above connections between experimental results and the analysis allow some

implications to be made about crack growth in layered materials. The first important

result is that materials with thin layers and well-bonded interfaces have an initiation

toughness exceeding that of the brittle constituent, but only by, N,21 7z fm, /( 1Q -f),

Substantially higher values of initiation toughness require either thicker layers or

interfaces that exhibit extensive debonding and/or sliding. Control of the interface has

greater appeal, because the advantages of thick lavers are only manifest at thicknesses

in the 10-100 .Im range. Interface debonding is not vet predictable from fundamental

principles, but some empirical guidelines exist that provide useful insight.26

While interface slip is not as effective as debonding in enhancing toughness (Fig. 7),

slip may still be more attractive, when reasonable transverse properties are required. An
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interest::ng option in this regard is suggeteC by an ex\er~nena. rb-.a:;crn :: a

ductile interface 'aver can lead to high toughness \otably, a : ;.K': :

low "•'wld strength should provide high iniiation touchness by enabl:nc th'e tl:v -engv, tn

become large compared with the laver thickness Such a thmn ia\er sn.ouit not degrade

the propagation toughness assoc, ated with ductile phase bridging.

7. CONCLUSION

An analysis has been presented that predicts the initiation toughness for layered

materials with one brittle constituent. The analysis appears to be consistent with

experimental results for several ceramic/meal and intermetallic/metal systems

produced by either diffusion bonding or directional solidification. Two important

implications have been addressed. i) Thin layer bimaterial systems with well-bonded

interfaces are not conducive to substantial toughening. ii) Higher initiation toughness

can be achieved with thick layers. But, a more attractive approach is to introduce thin

interface layers that allow extensive (but controlled) inelastic deformation, either by slip

or debonding. Among these two options, slipping interfaces are preferred (where

possible), because they provide supericr transverse cracking resistance. These layers can

be produced either by reaction between the bimaterial constituents or by using physical

vapor deposition to produce the multilavers.

The analysis may also be used to rationalize behaviors found in lamellar

microstructures, such as periodic splitting. These splitting effects are, in turn,

fundamental to the high toughness exhibited by these materials. Further study of such

phenomena may lead to a fundamental understanding of the fracture properties of

lamellar systems.

Finally, it is recognized that new effects may emerge in nanoscale systems, wherein

the deformation of the metal layers is governed by the threading of individual
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-isocations However, the Cve,:CCton ithat the -. :, )--

resistance to plastic flow wvould lead t,: 1,iowe7 levels o , n,:" ton touc....s n..

ad 4ressed i;.; the present analysis
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TABLE I

Material Systems Investigated

LAYER THICKNESS (gm)

SYSTEM BRITTLE DUCTILE KB(MPa\ m

A120 3 /Al 45-680 8-250 3.5

NiA1/Cr(Mo) 0.75 0.35

TLAI/Nb 100-200 50 6-8
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FIGURE CAPTIONS

Fig. 1. A schematic of crack growth in a layered materia: wrh associated re:s:a.,ce

curve.

Fig. 2. A scanning electron fractograph of a diffusion-bonded Al 203/AI material

indicating plastic stretch of the Al to a ridge.

Fig. 3. Resistance curves for three layered materials a) A-103/Al with hm = 100 ýIr,

b) NiAl/Cr(Mo) with hm =1 JIm, c) TiAl/Nb with hm = 50 g.tm.

Fig. 4. Measurements of KN as a function of metal layer thickness for the A120 3 i/Ai

and A1203/Cu systems. The predictions are also shown.

Fig. 5. The fracture surface for a NiAl/Cr(Mo) layered material indicating splitting,

as well as plastic distortion.

Fig. 6 A crack within a layered, colony structure exhibited by the system,

TiAl /Ti 3A1.

Fig. 7. Asymptotic solutions for the effects of slip and splitting on the stress, (Y*.

a) The normal stress ahead of the crack as a function of relative distance from

the crack with a slip.

b) The normal stress ahead of the crack as a function of the relative slip or

splitting length.

Fig. 8. Finite element mesh used to evaluate effects of slip and splitting.

Fig. 9. Effect of crack size on the stress ahead of a crack subject to a) splitting or

b) slip.

Fig. 10. The in-plane, (0x) stress ahead of a crack with a split.

Fig. 11. A schematic of the trend in strength with brittle laver thickness.

Fig. 12. Predictions of initiation toughness for weakly bonded layered systems with

and without splitting and comparison with results for NiAI/Cr(Mo).
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SMALL SCALE YIELDING AT A CRACK NORMAL TO THE INTERFACE BETWEEN
AN ELASTIC AND A YIELDLNG MATERIAL

Ming Y. He, R. M. McMeeking and Ning T. Zhang
Materials Department & Mechanical Engineering Department, College of Engineering
University of California, Santa Barbara, CA 93106

ABSTRACT

By using the elastic singular field as a prescribed loading condition, small scale
yielding solutions are obtained for a crack normal to the interface between a brittle and
a ductile material. Results for both a crack in the brittle material and one in the ductile
material are obtained by finite element analysis. The crack tip fields obtained by the
finite element analysis are compared with the asymptotic solutions. It is found that near
the tip the stress fields approach the asymptotic solutions. If the crack is in the brittle
material, the high triaxial stresses are developed near the interface ahead of the crack
tip.

1. INTRODUCTION

Thin films of metals, ceramics and polymers bonded to substrates are typically
subject to appreciable residual stress, which can cause cracking of the films. Many
analytical, numerical and experimental investigations have been conducted recently.
However, comprehensive elastic-plastic analyses for cracks in films are not available.
One purpose of our study is to provide one specific solution. The problem analyzed in
this paper is shown in Figure ]. A perpendicular crack meets an interface between two
dissimilar materials. Loads are applied which tend to open the crack (mode I loading).
The tip is at the interface. One material is purely elastic and the other is elastic-perfectly
plastic. By using the elastic singular field as a prescribed boundary condition, small
scale yielding solutions are obtained by finite element analysis and compared with the
asymptotic fields.

2. ASYMPTOTIC FIELDS

The plane strain asymptotic stress fields for a crack normal to the interface
between an elastic and an elastic-perfectly plastic material when the crack tip is at the
interface have been given by [1]. The results are quoted here as follows:
Problem A: If the crack is in the yielded material as in Figure la, the asymptotic
solutions for the stresses in the perfectly plastic material are given in polar coordinates
by [21

S=k(1I + 2_n 20)

ar=k(I+ 2  20) -2< .4 (1)

ao•e k

Mal. Res. Soc. Symp. Proc. Vol. 239. 1 1992 Materials Research Society
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and

Oi = k ( I + cos20 )3

a, = k(I - cos20) 3 <05 n (2)
C, = -k sin 20

The asymptotic solutions for stresses in the elastic material are given by

00 =-4kc jcose log-r4+-I-esinO + l+-")ksin26
7t L r, 2 )- ( 2 /

o, - s elogr+C0s2 Osin26l+(1+•nkc r -- _< - (3)n 2 2 2

a'.= 2k{sin 20(log r+ 1 ) +Ocos 2OJ-(1 + )ksin~cos9i I r, 2 2

where ro is an undetermined constant which has been determined by the finite element
analysis [1].
Problem B, If the crack is in the elastic material, consistent with Figure lb, the
expressions for the asymptotic stress fields in the perfectly plastic region are given by:

cyq = T+ k + kcos262
kit-< (4)

o,=T+---kcos20 4 -4
2

Ore = ksin20

eiast-c oiasvc Y elastc k
U(I 'l .

slip hne I (I 2 ilk

X field ~ e~astc--- x ,n'melace i

Probiem A crack symrnel'y a-,s

Y k
elasstc eiasic piasmc

X elastc !ieriace

Problem a crac* Syrme't a,,s

b

Fig. 1 Crack geometry
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and

o0 =T-2k 0-4

nt it
o,=T-2k 0--i -• -()

~2). 4 2

O'= k

The solution in the elastic region is

-O = T(1-cos20)+-(3+ cs20)- k0 + ksin22
2 4 2

O, = -(1 +cos20)+- (3- cos20)- kO- k sin28 - <-O x (6)
2 4 2 2

0,, =--(cos20-1)-i(T-% sin28
2 2

3. FINITE ELEMENT ANALYSIS

The displacements of the singular elastic solution [1,21, are used as boundary
conditions on the outer perimeter of a finite element mesh used to calculate plane strain
small scale yielding solutions. A general purpose finite element code, ABAQUS was
used. A typical finite element mesh contains 720 eight node isoparametric elements and
2358 nodes.

In order to deal with most materials combinations, we took different values of a

within the range -0.5 5 a!50.75 for [=a/4, where CL and P are the Dundurs parameters [4]

CE = (i0 (l-V-2 )-- 2(0 - V))/(.L1 (l - V2 )+p. 2 (1 - V)) (7)

3 = (g,(l - 2v 2 )-± 2 (I- 2v,))/( ( 1(l -v 2 )+x 2 (l - v)) (8)

p and v are shear modulus and Poisson's ratio of the material respectively and the
subscripts i=1 and 2 correspond to the arrangement shown in Fig.l.

Problem A: The crack is in the elastic-perfectly plastic material and the other material is
elastic. The small scale yielding solutions obtained by the finite element analysis shows
that near the crack tip the stress fields are quite similar to the asymptotic fields given by
(1)-(3). The stress fields shift toward the asymptotic angular distribution in the near tip
region. As an example the angular distributions of the stresses at a fixed relative

distance are shown in Figure 2, for a=0.5 and r=68, where 8, is the crack tip opening

displacement and ay is the yield stress in tension of the plastic material. The stresses

along the interface in the elastic perfectly plastic material, (O=n/2+) are plotted as

functions of normalized radial distance from the crack tip for a=0.25 in Figure 3a. The

counterparts for stresses along the interface in the elastic material, (0=-n/2-) are plotted
in Figure 3b. The plots indicate that the size of the domain dominated by the
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asymptotic field is very small compared to the size of the plastic zone.

Problem B: The crack is in the elastic material and the other material is elastic-perfectly
plastic. The angular distributions of the stresses at a fixed relative distance are shown in

Figure 4, for a=-0.5, and r=6-318. The results obtained by the finite element analysis are
shown by solid lines. The asymptotic solutions given by (6) in the elastic side and (4)
and (5) in the plastic side are also included in the Figures as dashed lines- It is clear from

[,= 5 :.=C 125 , ,.

tL i/" t ""I

elasitc plasCi- eiasilc

S• Infe,1acp

C I/

t42

Fig. 2 0-variation of stresses very near the crack tip for problem A: The crack is in the

elastic-perfectly plastic material and the other material is elastic. a = .5, = 6

-omu 9l pi' ni

~J L, •

42 0, 6

rl ' K'f,' Nw alul D[•slv roa fht Clak I¶" r'lK'tI

(a) (b)

Fig. 3 Stresses along the interface as a function of normalized radial distance from the

crack tip for problem A and cz=0.25 (a) Stresses in the elastic perfectly plastic material.

(b) Stresses in the elastic material.
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Fig. 7 Location of elastic/plastic boundary for problem A and problem B.

these plots that the fields obtained by the finite element analysis are quite similar to the
asymptotic fields. The stress fields shift toward the asymptotic angular distribution as
the radial distance approaches to zero. The angular distribution of the stresses
determined by the finite element calculation at a very small radial distance are in very
good agreement with the asymptotic solution. The stresses ahead of the crack are
plotted as functions of normalized distance for a=-0.5 in Figure 5. These plots indicate
the size of the domain dominated by the asymptotic field are very small compared with
the size of the plastic zone. As a function of a, Fig. 6 gives T deduced from the finite
element analysis. The plot for the asymptotic values of the hydrostatic stress
S=(u6+c)/2 ahead of the crack in the plastic material is also included in Figure 6, which

shows both T and S increases very rapidly with a. The results show that high triaxial
stresses are developed near the interface ahead of the crack tip. For example, even for
cz=O (i. e. one brittle and one ductile material, with the same elastic modulus and
Poisson's ratio, are bonded together), the triaxial tensile stress S ahead of the crack in the
ductile material will be 33% higher than in the homogeneous case. The presence of
large hydrostatic stresses ahead of a crack is clearly important for the promotion of
ductile fracture mechanisms involving the growth and coalescence of voids. Figures 7
show the location of the elastic/plastic boundary for problem A and B respectively. It is
demonstrated that the elastic/plastic boundary depends strongly on a.
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Abstract

Several problems are analyzed that have bearing on cracking and survivability in the
presence of cracking of layered composite materials comprised of brittle layers joined either by a
weak interface or by a thin layer of a well-bonded ductile metal. The problems concern a crack in

one brittle layer impinging on the interface with the neighboring brittle layer and either branching,
if the interface is weak, or inducing plastic yielding, if a ductile bonding agent is present. For the
case of a weak interface, the effect of debonding along the interface is analyzed and results for the
stress redistribution in the uncracked layer directly ahead of the crack tip are presented. Debonding

lowers the high stress concentration just across the interface, but causes a small increase in the
tensile stresses further ahead of the tip in the uncracked layer. A similar stress redistribution
occurs when the layers are joined by a very thin ductile layer that undergoes yielding above and

below the crack tip, allowing the cracked layer to redistribute its load to the neighboring uncracked
layer. The role of debonding and yielding of the interface on 3D tunnel cracking through an

individual layer is also discussed and analyzed. Residual stress in the layers is included in the

analysis.
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1. Introduction

When layered, thin sheets of a brittle material may have toughness and strength properti.

which are far superior to those of the material in bulk form [1 -6]. To achieve good strength and

toughness, the interface between adjoining layers must stymie the stress concentration effect of any

crack that occurs in an individual layer, reducing the likelihood that it will propagate into the next

layer. Depending on the nature of the interface, this may occur by debonding, when the interface
is brittle and relatively weak, or by yielding and sliding for systems comprised of brittle layers

alternating with thin ductile adhesive layers. The latter category is represented by sheets of A120 3

joined by thin layers of aluminum [2] and by the model system with sheets of A1203 bonded by

epoxy [3]. Some of the issues related to the design of layered brittle materials are similar to those

encountered in the design of fiber-reinforced brittle ,ILz.x composites, such as the selection of

interface toughness to prevent matrix cracks from penetrating the fibers. Other issues are unique to

the layered geometry, and this paper addresses a few of them. In particular, the role of yielding or

debonding of the interface in defeating cracks in individual layers is analyzed by considering the
stress redistribution in the adjoining uncracked layer that accompanies these processes. Results
will also be given for the energy release rate of 3D cracks tunneling through an individual layer.

This release rate, which is influenced by interface yielding or debonding, provides the essential
information needed to predict the onset of widespread layer cracking in terms of the thickness of

the brittle layer material and its toughness.

The geometries of the problems to be studied are laid out in Fig. 1. Fig. la shows a

cracked layer of width 2w with zones of either yielding or debonding in the interface extending a

distance d above and below the crack tips. The interface is taken to be either a very thin ductile
layer of an elastic-perfectly plastic material with shear flow stress, t, or a weak plane that debonds
and slips under conditions such that the layers remain in contact and exert a friction stress t on

each other. The ductile adhesive layer allows slipping of the layers it joins relative to one another

by plastic yielding, but it is assumed that debonding does not occur. In this case, zhe condition

K2 = 0 must be enforced, leading to well-behaved shear stresses at the end of the yielding zone and
establishing the zone length d. In the case where the interface debonds, the interface crack is fully

closed for d/w>0.71 [7]. The mode 2 stress intensity factor K2 at the end of the slipped zone will

be nonzero and must attain the mode 2 toughness of the interface for the debond to spread. Results
for K2 will be given.

Cracks in individual layers spread as 3D tunnel cracks propagating through the layer as
depicted in Fig. 2. Once the crack has spread a distance of at least several layer thicknesses in the

z-direction it approaches a steady-state wherein the behavior at the propagating crack front becomes
independent of the length of the crack in the z-direction. Under these steady-state conditions, the
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energy release rate of the propagating front can be computed using the plane strain solution

associated with the geometry of Fig. I a (other examples of tunnel cracks are given in the review

article [8]). The steady-state energy rciease rate can be computed in terms of the average of the

opening 8(x) of the plane strain crack. The zone of yielding or debonding increases the tunneling

energy release rate, theieby lowering the overall stress at which widespread layer cracking can

occur. Results for the tunneling energy release rate will be given. The role of residual stresses in

the layers are readily accounted for, as will be discussed in the final section.

When the interface is weak and debonding occurs, the interface crack is fully open with

mixed mode intensity factors when d/w<0.24 [7]. This case can be well approximated by the

asymptotic problem for a semi-infinite crack impinging the interface where the remote field is the

K-field associated with the problem in Fig.la with d=O. The stress redistribution in the next layer

ahead of the impinging crack tip will be given, along with a correction of previous results for the

energy release rate for the doubly-deflected interface crack of [9]. When plastic yielding of a

ductile adhesive layer occurs, another asymptotic problem applies when a is sufficiently small

compared to t. Then, the asymptotic problem is that shown in Fig. lb for a semi-infinite crack

loaded remotely by tOe same K field. In this case as well, emphasis will be placed on the effect of

yielding in the thin adhesive layer on the stress distribution ahead of the crack tip in the uncracked

layer.

2. Effect of Plastic Yielding on Stress Redistribution.

As discussed above, the thin ductile adhesive layers in Fig.la are Pssumed to be clastic-

perfectly plastic with a yield stress in shear of % and are modeled as having zero thickness. The

plane strain problem is considered where the central cracked layer has the same elastic properties

(E,v) as the semi-infinite blocks adjoining across the interfaces. Under monotonic increase of the

applied remote stress, a, the zones of yielding of half-height d spread allowing slip in the form of a

tangential displacement discor.inuity across the interface in the yielded region. The cor.dition

OFy=--t-T is enforced within the yielded zones of thc interface. The Dugdale-like condition, K2=0.

at ihe ends of the yielded zones ensures that the shear stress on the interface falls off continuously

just outside the yielded zone, and it determines the relation of d/w to al't under the Iiionotonic

loading considered. Integral equation methods are employed to solve this problem, as well as the

others posed below a brief outline of the methods used arm discussed in the Appendix.

The two most important functional relations needed to solve the 3D tunneling crack

problem discussed below are shown in Figures 3 and 4. In Fig.4, 8 is the average crack opening

displacement defined by
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The elastic value of E, valid when there is no yielding (t-oo), is &3---t(lv 2)aw/E. Yielding of
the adhesive layers begins to make a significant contribution to the average crack opening
displacement when a/t exceeds unity. The redistribution of normal stress, ayy(x,O), in the block
of material across the interface is shown in Fig. 5 for three levels of o/t. The curve shown for
o/r=1.5 is only very slightly reduced below the elastic distribution ( Yyy(xO)=(x+l)/(x2+2x) 1/2 )
for xlw>0.05. Reduction of stress ahead of the crack tip begins to be appreciable when a/t=2.7,

and is quite significant when a/'r=6.4. The drop in stress just across the interface is offset by a
slight increase in stress relative to the elastic distribution further away from the interface. This is a
feature seen in all the stress redistribution results.

Stress redistribution can be presented in another way when d/w is sufficiently small using
the asymptotic problem depicted in Fig. lb. As long as d/w is sufficiently small, the yielding
behavior is small scale yielding with the elastic stress intensity factor K as the controlling load
parameter. The remote field imposed on the semi-infinite crack is the elastic K-field. This
asymptotic problem has also been solved with integral equation techniques. The extent of the yield

zone in the asymptotic problem is

d = 0.0O5 2 - (2)

Fig. 6 displays the normal stress directly ahead of the crack tip in the adjoining block normalized
by the elastic stress field for the limit 't=-.. The stress ratio in Fig. 6 depends on x/d but is
otherwise independent of K in the asymptotic problem. Yielding reduces the stress below the

elastic level over a region ahead of the crack tip which is a little larger than d/10. Beyond that
region the stresses are slightly elevated above the elastic levels and approach the elastic distribution
as x/d becomes large. The stress redistribution due to debonding which is also presented in Fig.6

is more dramatic, as will be discussed later in the paper.

3. Effect of Plastic Yielding on Tunnel Cracking

As stated earlier, the steady-state energy release rate for a 3D tunneling crack can be
computed using the plane strain solution. For the geometry and loading shown in Figs.la and 2,
the leading edge of the tunneling crack propaga"rng in the z-direction experiences mode I
conditions. Let Gss denote the energy release rate averaged over the propagating crack front. An
energy balance accounting for the release of energy per unit advance of the tunnel crack under

steady-state conditions gives that 2wGss is the work done by the tractions acting across the plane
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of the layer crack in the plane strain problem as those tractions are reduced to zero from a. For the

present problems, this is the same as

Gfss=J0godo (3)

where 8 is the average crack opening displacement for the traction-free plane suain crack under
monotonically increased remote c. The elastic result for d=0 (i.e., %=oo) is

Go =(l - v 2 )o 2w (4)
2E

The ratio of Gss to G° can be computed from the data in Fig. 4 using simple numerical

integration. The result is plotted in Fig. 7. Increases of the steady-state release rate above the
elastic value become important when aft exceeds unity.

4. Effect of Debonding and Frictionless Slipping on Stress Redistribution

A review of the plane strain interface debonding problem for the geometry of Fig. I a is as
follows for the case where no frictional resistance is exerted across the debonded interfaces (i.e.,
",t=0 ). According to [7], the debonded interface will be fully open when d/w<0.24, and the
interface crack tip at the end of the debond is subject to mixed mode conditions, as will be
discussed further for the asymptotic problem below. For 0.24<d/w<0.7 1, the debond crack tip is
closed and therefore in a state of pure mode 2, but a portion of the interface near the main layer
crack is still open. For d/w>0.71, the interface is fully closed and the interface crack tip is in
mode 2. The top curve for the normalized mode 2 stress intensity factor in Fig. 8 applies to the
frictionless case. It was computed using the integral equation methods outlined in the Appendix
under the constraint that the interface remains closed. The results are strictly correct only for
d/w>0.71 (and are in agreement with the results of [7]), but are only slightly in error for smaller
d/w. The average crack opening displacement, 8, needed for the tunnel crack calculations is
shown in Fig. 9 where thn top curve again applies to the frictionless case.

The role of debonding on stress redistribution is seen in Fig. 10, where curves of the stress
ahead of the right-hand layer crack tip (normalized by the remote applied stress ;) are plotted for
various levels of debonding, all for the closed interface with r--0. Debonding clearly has a
significant effect on lowering the stress on the adjoining material just across the interface, more so

than for plastic yielding of a thin ductile layer discussed in connection with Fig. 5. For sufficiently
small d/w, the debonded interface is fully open and, moreover, the asymptotic problem for a semi-
infinite crack impinging on the interface applies, as depicted in the insert of Fig. 6. The stress
redistribution is plotted in Fig. 6, which shows that the stress ahead of the layer crack tip is
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reduced below the level in the absence of debonding over a distance from the interface equal to

one-half of the debond length d. This figure also makes clear that debonding appears to be more

effective in protecting the uncracked layer across the interface than plastic yielding of a thin ductile

adhesive layer.

As a digression, we record the mode I and 2 stress intensity factors fl the open interface

crack tip for the asymptotic problem of Fig. 6:

KE = 0.39 9  and K2 = 0.322 (5)

K K

The associated ratio of the energy release rate of the interface crack tip to that of a mode I crack

penetrating straight through the interface without debonding is 0.263 when both the deflected tips

and the penetrating tip emerge from the main crack tip at the same applied K. These results correct

results given in [9] which were in error for the case of the doubly-deflected interface crack. A

complete set of corrections of this energy release rate ratio for this case over the full range of elastic

mismatch across the interface will be included in an upcoming paper [ 101.

5. The Effect of Frictional Slipping on Debonding and Tunnel Cracking

Figs. 8 and 9 contain curves for the normalized mode 2 stress intensity factor and the

average crack opening displacement, respectively, in the plane strain problem for several levels of a

constant friction stress rt relative to a acting over the bonded interface. A constant friction stress,

as opposed, for example, to a Coulomb friction stress, has been used by a number of workers to

represent the frictional forces exerted across slipping interfaces in composites. The purpose of the

present limited study is to ilustrate the effect of friction in establishing the extent of debonding and

its associated influence on the 3D tunneling energy release rate. Almost certainly, additional

studies will be required before a good understanding is in hand, including studies with other

friction laws. Some results for the effect of Coulomb friction on the mode 2 interface stress

intensity factor have been presented in [ 11].

Let Kc denote the mode 2 toughness of the interface. Attention will be concentrated on the

behavior following initiation of interface debonding when the debond length, d, is sufficiently

large (i.e., greater than about w/4 ) such that the debond interface crack tip is in mode 2. Impose

the debonding condition, K2=Kc, on the solution presented in Figs. 8 and 9. The relationships

that result between the applied stress and the debonding length and the average crack opening

displacement are plotted in Figs. 11 and 12. The two nondimensional stress parameters in these

figures are the applied stress parameter, (o'lw)/Kc, and the constant friction stress parameter,

(TVw)/Kc. (Note that it is necessary to interpolate values between the curves of Figs. 8 and 9 to
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arrive at the plots in Figs. 11 and 12, since a constant value of (Cr'w)/Kc does not correspond to a
constant value of /o.) In the range of d less than about w/4, the predictions are not expected to be
correct since the interface undergoes mixed mode debonding and not mode 2 debonding. Thus,
the details in the vicinity of the initiation of debonding are not correct. In particular, the value of
(o-'w)/Kc at which 8 begins to depart from &0 (see Fig. 12) would depend on the mixed mode
condition for debond initiation. But once debonding has progressed to the point that the interface
crack tip is closed, the mode 2 criterion is appropriate and the curves are accurate.

In the absence of friction the debonding process is unstable, since for a fixed a, K2 has a
maximum when d.-w and then drops slightly to an asymptote as d increases further. Under a
prescribed a, the mode 2 debond would advance dynamically after it is initiated. In this sense, the
curves shown in Figs. 11 and 12 for T=O represent unstable debonding behavior. Friction
stabilizes the debonding process giving rise to a monotonically increasing debond length and
average crack opening displacement as the applied stress increases. A nondimensional friction
stress on the order of ('tw)/Kc=1/8 or more is required if friction is to be important.

The steady-state energy release rate for tunnel cracking can be computed from the curves in
Fig. 12 using (3). The results of this calculation are plotted in Fig. 13. As before, Gss is
normalized by the value for a layer crack with no debonding given in (4). The remarks made
above with respect to accuracy in the vicinity of debond initiation apply to these curves as well. It
can be seen from Fig. 13 that debonding can iideed significantly promote tunneling cracking when
the nondimensional friction stress is less than about (VT'w)/Kc=l/2.

6. Accounting for Residual Stress in the Cracked Layer

The role of an uniform residual tension, ayy=GR, pre-existing in the layer that
subsequently undergoes tunnel cracking can be readily taken into account in the various results
presented above. For the purpose of discussion, now let Gyy=OA be the applied stress, replacing
the notation for a in the earlier sections. The results in Figs. 3-4, 7-9 and 11-13 apply as they
stand if a in those figures is identified with GA+ajR. The results for stress redistribution shown in
Figs.5 and 10 can also be used with the following modifications. With a identified with A-A+aR,
the results in Figs.5 and 10 are correct for the change in 0 yy in the layer ahead of the tip due to
cracking if the numerical value of the ordinate is reduced by 1. To obtain the total stress 0 yy in the
layer in question, one must then add together the change and the stress Gyy existing in the layer

prior to the cracking event.
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Appendix: Numerical Approaches

Two integral equation formulations were used in the solution of the problems discussed.

Both methods have been used by various authors to solve related plane strain problems and, for
this reason, details of the methods will not be given. In some cases, results were generated using
both schemes as a check. The methods used for the problems for the closed interface cracks at the
the ends of the finite length layer crack (see Fig. la) will be discussed first.
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The integral equations in method 1 are formed by representing both the layer crack and the

mode 2 interface cracks by distributions of dislocations. With reference to Fig. la, let

bo(x)=-d&/dx denote the amplitude of the dislocation opening distribution extending from 0 to w

along y=O, and let bs(y)=-dSy/dy denote the amplitude of the dislocation shearing distribution

along x=w extending from 0 to d. The condition that cyy=O along y=0 for -w<x<w can be written

as

fw 
d

J0 H1 (x,x')b 0 (x')dx'+J 0 H2(x,y)bs(Y)dy = -O (AI)

where H1(x,x') denotes the stress Oyy(X) along y=0 due to b0 (x'), with due regard for the

symmetry of this distribution with respect to x=O, and H2(x,y) denotes ~yy(x) due to bs(y), with

the appropriate four-fold symmetry on this distribution imposed. Similarly, the condition that

Ocxy=-,r along x=w between 0 and d (with the corresponding shear conditions met along the other

three legs of the H-crack) is

JoH3(y,X' )b0 (x' )dx +Jo H4 (y,y`)bs(y' )dy' = -z(A2)

where H3(Y,x') is oxy(y) along x=w due to bo(x') and H4(y,y') is Oxy(y) due to bs(y').

Method 2 makes use of the solution for the problem of four symmetrically placed

dislocations interacting with a traction free crack extending along the x-axis from -w to w. With

H(y,y') denoting the shear stress Oxy(y) along x=w between 0 and d due to bs(y'), with due

regard for the other three symmetrically placed dislocations, the single integral equation for bs is
d

JoH(y,y' )bs(y' )dy' = -OXy(Y)- ( (A3)

0where oy (y) is the shear stress along x=w due to the remote stress acting on the layer crack in the

absence of the interface cracks.

The kernels of the integrals above have Cauchy singularities. The dislocation distributions

can be obtained using several well known numerical techniques. Once the distributions are known

in either method, they may be used with other integral expressions to compute the stress

components at any point in the plane and the mode 2 stress intensity factor at the end of the
interface crack. For the cases in which K2 is nonzero, the distribution bs(y) has an inverse square

root singularity at y=d, while it diminishes with the square root of the distance from y=d for the

plastic yielding problems with K2=0. The solutions are not overly sensitive to having a precise
incorporation of the correct behavior of the dislocation distributions at the comer point at x=w on

y=0. A number of choices were made, including representations which built-in the correct lowest

order functional behavior near this point.
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The asymptotic problem for the semi-infinite layer crack and the mode 2 interface cracks

(see Fig.lb) was solved using method 2. Now, H(y,y') is the shear stress along x=0 between 0

and d due to just two symmetrically placed dislocations on x=O at ±y' interacting with a traction-
free semi-infinite crack, and oy (y) is the shear stress on x=O due to the K-field in the absence of

the interface cracks. The second asymptotic problem discussed in connection with Fig. 6 in which

the interface crack opens is also solved using method 2, but here both shear dislocations and

opening dislocations must be used and the problem becomes a set of dual integral equations. In all
the cases involving method 2, the kernel functions H can be obtained in closed form using complex
variable methods of elasticity.
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Fig.2 Specification of the 3D tunneling crack problem.
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ABSTRACT

Reinforcements are known to increase the creep resistance of metal

and intermetallic matrix composite materials. Experimental measurements at

modest temperatures indicate that under a given applied strain rate the

composite strength is higher than that of the matrix alone. However, at

temperatures higher than approximately half of the melting temperature of

the matrix, the composite strength is limited and in some cases the

strengthening imparted by the reinforcemer,.s is completely lost. Diffusional

relaxation and slip on the reinforcement-matrix interface are suggested as

mechanisms responsible for the loss of strengthening. According to the

proposed model, stress gradients caused by plastic constraint induce

diffusional flow along the interface accompanied by slip of the matri- ver

the reinforcement. As a result the constraint tends to be relaxed and

strengthening can be eliminated. The composite behavior is investigated by

coupling the diffusion and slip along the interface with deformation of the

matrix in the power law creep regime. A unit cell model is used in axial

symmetry and the relevant boundary value problem is solved by the finite

element method. Numerical results indicate that either diffusional relaxation

or slip may knock down the creep resistance of the composite to levels even

below the matrix strength.

INTRODUCTION

The creep strength of metal and intermetallic matrix composite

materials reinforced with large rigid particles has been of interest recently for

application in high temperature, high strength components. It is believed that

strengthening in those materials can be understood on a continuum basis if

the reinforcements are at least micron-sized, so that they are larger than the

4G:MS22(12/11191)8:44 AM/mef
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dislocation structures (cell size, travel distance etc.). Then the underlying

principle is that strengthening develops from the constraint of the

reinforcement on the matrix. Consequently, creep strength at high

temperature will persist only if the constraint is maintained. Conditions of

slip or mass transport at the matrix-reinforcement interface can reduce the

constraint and relax the matrix stresses. Rosler et al. (1990) investigated this

situation in the mechanical behavior of y-TiA1 reinforced with Ti2 AIC

platelets in the temperature range 293K to 1255K. At temperatures up to

1000K, the creep strength of the composite material at a given strain rate was

found to be higher than that of the matrix alone. Such a temperature

corresponds to half of the melting temperature of the matrix. As the

temperature increases beyond 1000K, the relative composite strength reduces

and at about 1250K falls below that of the matrix (see Figure 1). Rosier, Bao

and Evans (1991) proposed an explanation of the diminishing relative

strength at higher temperatures by means of a diffusional relaxation

mechanism. Matter transported from the side to the top of long

reinforcements provides additional strain of the composite material above

and beyond that due to matrix flow. However, their model assumed free slip

at the interface and gave no indication of the relative importance of slip

versus mass transport.

In this article, the resistance of a power law creeping matrix reinforced

by spherical rigid particles is addressed with theoretical models. At low and

modest temperatures the interface is considered to be non-slipping and

without significant mass transport. The strengthening imparted by the

reinforcements is quantified under those cor.ditions. At temperatures higher

than approximately half of the melting temperature of the matrix, interface

slip and diffusional relaxation are investigated as potential mechanisms

4G:MS22(12/11/91)8:44 AM/mef
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responsible for the loss of strengthening. In the analvsis, the deformation of

the creeping matrix is coupled with slip of the matrix on the reinforcement or

diffusional mass transport along the m atrix- rein forcemen t interface. The

finite element method is used to solve the relevant boundary value

problems. Interface slip or diffusional relaxation are found to knock down the

creep strength of the composite. An important point is that this effect can

occur due to slip alone. Furthermore, a size effect is introduced by diffusion

and slip and an assessment of the dependence of the creep strength on the

reinforcement size is made.

It is suggested that the net composite strength is controlled by the

nature of the matrix-reinforcement interface. The following cases are probable

(see Figure 2). (a) The interface is perfectly bonded and no slip or mass

transport occurs; the full reinforcement constraint is imposed on the matrix

and X is greater than unity where ý, is the ratio of the strength of the

composite material at a given strain rate divided by the strength of the matrix

material alone at the same strain rate. (b) Slip of the matrix relative to the

rigid reinforcement along the particle-matrix interface can occur; the

constraint of the reinforcement on the matrix is relaxed to some extent, and

the relative strength X is diminished. (c) Long range diffusional mass

transport along the interface occurs; the constraint of the reinforcement on

the matrix is relaxed even further, and the composite strength is less than the

matrix strength.

Slip on the matrix-reinforcement interface may be possible because of

the presence of an interface with a rheology different from both the matrix

and the reinforcement. This situation is depicted in Figure (3b) where a thin

weaker layer is interposed between the matrix and the reinforcement. The

low viscosity of the layer permits a relatively high shear strain rate there.

4G:MS22(12111/91)8:44 AM/mef
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Because of the minimal thickness of the interphase, the behavior is

effectively represented as a tangential velocity parallel to the interface

controlled by the shear stress (see Figure 3b). Thus

hrVS = Y =i = 11 (1)

where v. is the matrix velocity parallel to the interface, h is the interphase

thickness, j' is the shear strain rate in the thin layer, T. is the shear stress at

the interface and 71 is the viscosity of the interphase material. The viscosity

could be stress dependent as in power law creep, but in this paper linear

rheology only will be considered so that Tj is a constant. The quotient Ti/h can

be combined into a slip parameter g. giving the slip velocity

"V, (2)

The temperature dependence of the viscosity of the interphase material may

differ from the temperature dependence of the rheology of the matrix

material. Thus, at low creep temperatures, the viscosity of the interphase may

be high enough to enforce a no-slip or near no-slip condition between the

matrix and the reinforcement. However, at higher creep temperatures the

interphase could soften relative to the matrix, initiating slip at the interface.

Of course, the opposite could be true if, as the temperature rises the matrix

softens relative to the interface.

An alternative possible mechanism for slip arises from short range

mass transport by diffusion on the interface. Asperities on the reinforcement

surface give rise to tension and compression (see Figure 3c) which produces

chemical potential gradients. Diffusive fluxes occur due to these gradients

and, biased by the shear stress, the mass transport augments the matrix creep

4G:MS22(12/11/91)8:44 AM/met
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rate. As a result, tkhe matrix velocity in the direction of the shear stress is

higher than it would be due to matrix creep without mass transport. The

additional velocity is proportional to the diffusion rate on the interface and

inversely proportional to the square of the size scale of the roughness. The

diffusion rate is controlled by the stress levels on the asperities and thus by

the shear stress in the matrix. Consequently, the additional slip velocity is

given by eq. (2), but in this case with gt being

12
1t=-- (3)

D

where I is an effective length scale for the asperities and D is an interface

diffusion constant defined fully below. The form in eq. (3) is similar to that

found by Raj and Ashby (1971) for grain boundary sliding, except in that case

the roughness retards the slippage rather than enhances it. The diffusion

parameter D is temperature dependent so that this slip mechanism may

operate at high temperature but be inactive at low creep temperatures. At

very high temperatures, D is very large and thus g is very small. This means

that the interface can sustain only very low shear stress at very high

temperature. In addition, long range mass transport by diffusion on the scale

of the reinforcement size becomes significant at very high temperature. Thus,

the long range diffusion regime is characterized by near zero shear drag on

the interface.

CELL MODEL

The composite material behavior is modeled by the response of an

axisymmetric cell. This approach has been used widely; see, for example, Bao,

Hutchinson and McMeeking (1991). The unit cell is shown in Figure 2. The

uniaxial stress is a and in response, the axial strain rate is E . The unit cell is

4G:MS22(12/11/91)8:44 AM/mef



constrained to remain cylindrical with zero average transverse stress and the

end surfaces are required to remain planar during deformation. Both lateral

and end surfaces are free of shear traction. The reinforcement in the center of

the cylinder is rigid. The matrix material is incompressible and has a uniaxial

stress-strain rate behavior given by

- I= (4)

where t. and Go are material constants and n is the creep exponent. Under

triaxial stress situations the creep law becomes

G, (5)

where a'is the deviatoric stress tensor, t is the strain rate tensor, (P is a creep

potential such that

na~t.t. V(6)q-n+l (t.)

and te is the effective strain rate

2.. = ijti (7)

The creep strength of the composite material is assessed through the

relative strength X defined as

(8)

where U(E) is the strength of the composite at a given axial strain rate - (see

Figure 2) and (5(C) is the strength of the matrix material alone at the same

4G:MS22(12/11/91)8:44 AM/mef
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axial strain rate E. Thus strengthening is characterized by X > 1, as shown in

Figure 1.

PERFECT INTERFACE

In uniaxial tension, the creep strength U of the composite material at a

given axial strain rate E is given by

where U. is the composite reference stress. The parameter U. depends on the

volume fraction Vf and the aspect ratio of the reinforcement (Bao et al.

(1991)). Using eqs. (4), (8) and (9), one finds that

U0 =(10)
GO

Hence, the reference stress U. characterizes both the strength U and the

relative strength X of the composite material

By symmetry, the solution in the first quadrant of the unit cell only is

required. In Figure 4, this situation is depicted with a rigid spherical

reinforcement of radius R within a cylinder of the matrix material. The

cylinder's height is equal to its width, 2b. The interface is modeled by

imposing both zero normal and tangential velocities v, and V, at any point

on the interface (i.e. Figure 4 with g = oo). The cell is stretched in the z

direction with a uniform end velocity v, = Eb. Macroscopic incompressibility

of the cell implies that the cylindrical surface at r = b moves in radially with

velocity v, = -b /2. On the surfaces at r = b and z = b, the shear stress

o• = 0. By symmetry or, and the normal velocities are also zero on z = 0

4G:MS22(12111/91)8:44 AM/mel
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and r=0. The zero average stress condition on the cylindrical surface

b

requires that f Offdz = 0.
0

The boundary value problem for the deformation of the matrix

material in V is solved for velocities by minimization of the convex

functional

U.v=f[w+Kt .]dV (11)

v

where K is a large penalty function chosen to keep £tk very close to zero,

effectively imposing incompressibility. Solutions were found by the finite

element method. Further details of the treatment of the material nonlinearity

and incompressibility are described by Sofronis and McMeeking (1991).

Finite element solutions were obtained in a range of strain rates 00

from 0 to 20 and found to agree precisely with eq. (9). The composite strength

;f is dependent on n and the volume fraction of reinforcements, V,. The

results for U. obtained for n=5 and n= 10 when Vf = 0.2 agree with values

obtained by Bao et al. (1991). For n=10, X = 1.16, for n=5, X = 1.23 and for

n=1, X = 2.02. These results confirm that the finite element program used

for the matrix creep analysis is accurate and reliable. Furthermore, the results

of Bao et al. (1991) predict well the experimental strength of composites with

undamaged reinforcements and interfaces (Evans, Hutchinson and

McMeeking, (1991)), confirming that the unit cell approach is realistic.

INTERFACE SLIP

In order to assess the effect of interface slip, the boundary value

problem for the unit cell (see Figure 4) was solved with a different boundary

4G:MS22(12/11/91)8:44 AM/mef
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condition at the matrix-reinforcement interface. Otherwise, the boundary

conditions for the problem are those described in the previous section. On the

interface, slip of the matrix material over the reinforcement is modeled by

requiring that v, = 0 and that the shear stress "r, is related to the tangential

velocity through eq. (2). Such conditions have been used in other treatments

of similar problems, especially the linear case, e. g. self consistent treatments

(Mura (1982)). The boundary value problem is solved for velocities by

minimization of the functional

U[y] = j[p + ½K"2 ]dV+ U,[[y] (12)
V

where

U.[v] f IjPgV2dS (13)
S'2

and Sr is the matrix-reinforcement interface. The first variation of the

functional U, gives the virtual energy dissipation rate on the interface due to

slip (Needleman and Rice (1980)). The functional U. is convex and hence U

is too, ensuring favorable convergence properties for the finite element

method used for the problem.

The interface slip effect was studied by means of the dimensionless

parameter 4 such that

0o (14)

gR(4

The slip resistance of the interface drops with increasing 4. Slip occurs freely

as -- o-. For ý = 0, that is for v. = 0, the no slip condition prevails.

Solutions by the finite element method were obtained for values of ý varying

from 0 to 105. No significant difference in the numerical results was found for

4G:MS22(12/11/91)8:44 AM/mef
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Sgreater than 100. This indicates that for ý greater than 100 slip is effectively

free. In Figure 5 the relative strength of the composite is shown as a function

of 4 for a reinforcement volume fraction Vf : 0.2 at applied strain rates

9/to equal to 0.2, 2, 20 and 50.

For the linearly viscous matrix material with n=1, the relative strength

Xis independent of strain rate. This occurs because the slip rheology at the

interface is linear too. As mentioned previously, the value of X for n=1 is 2.02

when the interface is non-slipping e.g. = 0. As ý increases the relative

strength drops rapidly and at about • = 10, it has reached an essentially

asymptotic value of 1.27. Thus, slip decreases the composite relative strength

by as much as 37% compared to the material with the non-slipping interface.

Notice, though, that the composite remains stronger than the unreinforced

matrix even when there is no shear drag at the interface.

In the case of the nonlinear matrix material, the effect of slip has been

computed for n=5 and n=10 (see Figure 5). As noted previously, when ý = 0

the relative strength is 1.23 and 1.16 respectively, but when slip is permitted,

the relative strength decreases with 4. Except for the high strain rate case, for

large ý the strength asymptotes to a value which is just below 1. Thus in

many cases the strength of the material with a freely slipping interface is

lower than the matrix. Contrary to the linear matrix case, the strain rate

affects the relative decrease of strength and therefore the value of 4 at which

the relative strength has effectively reached its asymptotic value. The table

inset in Figure 5 shows the values of 4 for each strain rate at which the

composite strength equals the matrix strength. Note also that the decrease in

the composite relative strength occurs more rapidly in terms of 4 when the

strain rate is low and, to a small extent, when the creep exponent is high.

4G:MS22(12/11/91)8:44 AM/mef
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The observed effect is similar to the behavior of a stressed, one

dimensional system with a linear material in series with a nonlinear one.

This gives a total strain rate of

a) +_a (15)

At high strain rates, the nonlinear material dominates the behavior because

the strain rate due to that material grows rapidly with stress. Consequently,

the composite material strength is similar to that of the purely nonlinear

material. At low strain rates, the linear material determines the strain rate

because the contribution from the nonlinear material diminishes rapidly

with stress. Thus for low strain rates the composite material strength will be

similar to that for the linear material alone. If that strength is low compared

to the nonlinear material, the result for the composite system is a diminished

strength. At intermediate strain rates there will be a transition from a

strength characteristic of the nonlinear material to the strength characterizing

the linear material. The behavior at constant 4 in Figure 5 is broadly in accord

with this concept, although obviously somewhat more complicated. The

behavior at constant strain rate in Figure 5 is consistent with the simple

uniaxial model, but with a finite asymptote as 4--- -o. Perhaps a more

complicated model with parallel and series elements could be constructed to

exhibit the observed behavior, e.g. possibly a nonlinear material in parallel

with an element consisting of a linear material in series with a nonlinear

one. However, the point is clear that a high strain rate induces behavior

dominated more by the nonlinear matrix whereas a low strain rate permits

the linear interface properties to have more influence.

4G:MS22(12/11/91 )8:44 AM/mrf
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In Figure 6 the relaxation of the constraint associated with the freedom

to slip at the interface is illustrated. In Figure 6a, contours of equal hydrostatic

stress constraint, (Yk/3(Yo , are shown for the case of a non-slipping interface

in a composite material with Vf = 0.2 and a matrix creep exponent n=10.

The strain rate is t/t. = 20. In this case = 1.57. The maximum

hydrostatic constraint is 2.5 and is close to the pole of the reinforcement. The

matrix also undergoes intense shear along the interface. The interface is

under tension around the pole and under compression around the equ ator.

The maximum compressive hydrostatic constraint is -0.9. In contrast with the

non-slipping case, Figure 6b demonstrates that hydrostatic stress relaxation

occurs when the matrix slips freely on the interface. In this example 1 = l0,

so that there is essentially no shear drag at the interface. Now i(•)/to = 1.28.

Clearly the maximum hydrostatic stress in terms of okk/3 0o has dropped to

1.1 from the previous value of 2.5. Moreover, there are no longer regions

under compression along the equator of the particle. Bccause there is no drag,

intense shearing deformation along the interface is not present.

LONG RANGE INTERFACE DIFFUSION

Figure 6b shows that even when the matrix slips freely without drag

over the reinforcement, a gradient in the normal stress on the interface exists.

At high temperatures, this normal stress gradient motivates diffusional mass

transport from the sides to the poles of the reinforcement as is shown

schematically in Figure 7. In this section, the deformation of the matrix is

analyzed coupled with interface diffusion and free slip.

The chemical potential per atom along the interface is (Herring, (1950))

=-(Y no (16)
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where O. is the normal stress and 0 is the atomic volume. Strain energy

terms have been taken to be negligible (Needleman and Rice (1980)). The

volumetric flux j crossing unit length in the interface is given by

j- D b (17)" KT

where Db is the interface diffusion coefficient, 5b is an effective interface

thickness, V ii the two dimensional gradient operator on the interlace

surfa'e, K is Boltzmann's constant and T -he absolute temperature,

Substituting eq. (16) into eq. (i7), one finds

j= 0VoY (18)

whers-

D - Db, 8b• (19)
KT

is an interface diffusion const?'it whose dimensions are volume divided by

stress. The dimensions of j are area over time. Matter conservation along the

interface requires

V.j+vn =0 CI0)

where vn is the separation velocity between thp matrix and the interface. For

the case of a spherical surface with radius R, eqs. (18) and (20) are written as

j(s)= Dda,,(s) (21)
ds

I d (jsin( sI)) + vn = 0 (22)
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where the scalar j is the flux in the circumferential direction on the sphere

and s is the arc length distance measured from pole of the reinforcement,

Because of symmetry

j(O) = i(s) 0 (23)

where Sf = R/2.

The unit cell boundary value problem in which the creep deformation

of the matrix is coupled with interface diffusion and free interface slip is

summarized in Figure 8. The condition for free slip implies that the

tangential stress T, on the interface is zero. Eqs. (21) and (22) specify the

boundary condition imposed on the normal velocity vn to the interface. The

rest of the boundary conditions are exactly the same as for the previous two

boundary value problems. The solution is obtained for velocities by

minimization of the functional

U[_v]= f[p + LK t2 ]dV+ Ud[v] (24)
V

where

Ud[V]= J -2 dS (25)

where j is regarded as a functional of the velocity y through eq. (21). Eq. (25)

indicates that Ud is convex and consequently so is U. In Appendix A, it is

shown that the energy dissipation rate due to diffusion over the interface Sr

equals the variation to first order of Ud in V. Solutions to the minimization

of U[v] were obtained by the finite element method. The numerical

treatment of the functional Ud of eq. (25) is given in Appendix B.

The diffusion effect was investigated through the dimensionless

parameter

4G-:MS22(12/11/91)8:44 AM/mef
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S Do,° (26)X- R 3 •o

which had values ranging from 0 to 10'. Strain rates ý/to equal to 0.2 and 20

were used, with a particle volume fraction of Vf = 0.2. In Figure 9 the

composite relative strength is plotted against X. Figure 9 has been drawn to

the same ordinate scale as Figure 5 to facilitate comparison. As before, the

relative strength X of the linear material is independent of the applied strain

rate. At X = 0 the parameter X. for n=1 equals 1.27 which is the relative

strength of the composite when interface slip is free but there is no diffusion,

e. g., when X = 0 but 4 is very large. As X increases, the composite strength

decreases with X becoming less than unity at X = 0.06 . Thus the composite is

weaker than the matrix alone for X values greater than 0.06. For X greater

than 4, an asymptotic value of X= 0.75 is essentially attained, i.e. the

composite strength is 75% of the matri, strength. This level corresponds to

60% of the strength prevailing in the free slip situation with no diffusion.

Compared to the no slip, no diffusion case, the strength is 37%.

In the case of the nonlinear material with strain rate = 20, free

slip but no diffusion (X = 0), the composite strength is such that X = 0.97

and 0.95 for n=5 and n=10 respectively. For X greater than 90, the asymptotic

value of X. =0.75 is essentially reached for both n=5 and n=10, which

amount to 77% and 79% , respectively, of the strength with free s" and no

diffusion; i.e. 61% and 65% respectively of the composite strength with no slip

and no diffusion. Figure 9 shows clearly that the strength drops very

gradually with X when the strain rate is 0/.o = 20. In Figure 9 the behavior is

also shown for a strain rate of 0o = 0.2 when the stress exponent is n=5.

Then at X = 0 with free slip, the relative strength parameter X equals 0.97. As
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X increases, the relative strength for the case with the strain rate E/,, = 0. 2

drops faster than that of the higher strain rate case (E/t. = 20, see Figure 9).

For X greater than I in the low strain rate case, the relative strength

essentially asymptotes to the value of X = 0.75. This corresponds to 777c of

the strength with free slip but no diffusion when n=5 and to 61% of the

strength with no slip and no diffusion.

It is notable that in all cases (n = 5 & 10; t/o= 0.2 & 20) the

asymptotic strength with very fast diffusion and free slip (o = c; X = ,M) is

75% of the matrix strength. Thus, the asymptotic behavior in this extreme

seems to be independent of the matrix creep properties. Otherwise, the

transition from no diffusion to very fast diffusion seems to follow the pattern

found in the transition from no slip to free slip. That is, higher strain rates

induce higher strengths in the nonlinear material while the distinctions

between the n=5 and n=10 cases are not substantial. Thus a similar concept

involving linear and nonlinear elements in series and perhaps a further

nonlinear element in parallel provides a simple very approximate model for

what is observed.

In Figure 6c the relaxation of the hydrostatic stress constraint G. /3a3o

due to diffusional mass transport on the interface is shown at t/t, = 20,

n=10, 4 = oo and X = 1. In this case ;(-)/•o = 1.24. Long range diffusion

relaxes the matrix constraint somewhat below the levels associated with free

slip but no diffusion (see Figure 6b). The effect is most marked at the pole of

the reinforcement. When material is deposited by diffusion extremely rapidly

at the pole, i.e., at very large X, the region above the pole is actually

compressed by the inserted material (see Figure 6d for X=1000 where

U(•/a3 = 1.01). This phenomenon limits the reduction in strength of the
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composite, because the compressive stresses retard further diffusional mass

transport to the pole.

DISCUSSION

It has been shown that the loss of strength due to interface slip and

mass transport depends on the dimensionless groups ý and X defined by eqs.

(14) and (26) respectively. The composite relative strength decreases

monotonically with increasing ý or X. An asymptotic strength, often less than

that of the matrix material alone, is found for the composite when either ý

alone or both 4 and X become infinitely large. If slip is controlled by short

range diffusion, 4 is inversely proportional to the square of an interface

roughness scale length I and the size R of the reinforcement. On the other

hand, the long range diffusion group X is inversely proportional to the

volume of the reinforcement, i. e. R3 . Therefore, if slip is controlled by short

range diffusion, ý is typically very much larger than X since the roughness is

almost always tiny compared to the particle size. Consequently, if diffusional

mass transport is enhanced at high temperature, slip will be the phenomenon

which shows up first as the temperature is raised. Depending upon the degree

of material nonlinearity and the resistance to shear at the interface, slip alone

may knock down the relative strength of the composite to approximately the

strength of the matrix material alone. Additional long range diffusive

relaxation can, in the extreme, bring the relative strength down to 75% of the

matrix strength.

A reinforcement size effect is introduced to the composite creep

behavior by both interface diffusive slip and mass transport. This can be

assessed through the parameters ý and X. The larger the reinforcement, the

lower 4 and X are and thereby, the stronger the composite is. Note that the

4G:MS22(12/11/91)8:44 AM/mef



19

reinforcement size has a much stronger effect through long range mass

transport (1/R 3 in X) than through slip (0/R in 4). However, in the case of

both mechanisms, small reinforcements are undesirable if strength is

imparted by continuum constraint and if slip or interface diffusion are active.

On the other hand, large reinforcements are susceptible to cracking which

would tend to counter the advantage of size in retarding slip and diffusive

relaxation. Hence, a coupled analysis of slip and diffusion along with particle

cracking is needed in order to address the net effects of reinforcement size.

The temperature dependence of the composite strength depends on the

parameters g,D and B = tocr.. All three are characterized typically by an

exponential dependence on an activation energy Q divided by KT (Frost and

Ashby, (1982)). Ratios like D/B depend exponentially on temperature

through A Q/KT where A Q is the difference in activation energies for the

two mechanisms associated with the parameters in the ratio. As a result, the

difference AQ determines whether D/B is an increasing or decreasing

function of temperature. Thus eqs. (14) and (26) provide the temperature

dependences of 4 and X via g/B and D/B. Consequently the composite

relative strength may increase or decrease with temperature. In order to

estimate qualitatively the effects of temperature in a specific system one needs

precise information on the magnitude and temperature dependence of D and

gi along the interface. Such information can only be obtained experimentally

and few data are available.

CLOSURE

A model has been developed that shows that interface slip and long

range interface diffusion can eliminate the constraint strengthening that rigid

particulate reinforcements impart to composite materials with creeping
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matrices. Two dimensionless groups have been introduced to characterize the

strength degrading mechanisms. Both groups can depend on interface

diffusion if slip is controlled by short range mass transport. Consequently',

both can depend on the interface diffusion constant D. The relative creep

resistance decreases monotonically with increasing values of the

dimensionless parameters and thus with D. Large reinforcements provide

stronger resistance to creep flow than small particles if slip or diffusive mass

transport occur at the interface, because the dimensionless parameters depend

inversely on particle size
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APPENDIX A: POWER DISSIPATED IN DIFFUSION

The work rate that the normal interface stress G n does on a virtual

variation 8 vn of the separation velocity v. along the interface is

P=fGn8v.dS (A1)
S,

Using eq. (22) to describe the variation 8vn in terms of the variation 8j and

substituting into eq. (Al), one finds for the spherical particle of Figure 8

P =-' _ sin R I1 (d sin(R))2Y t Rsin(R ds

+ sin( S )dR ) ds

=- 27R Sa d<8j sin(jý))=

=- 27tRan8jsin -i +27ER0f 1jS sin(hI)ýL ds
RR )10 ds (A2)

where sf = n R/2. Eq. (23) dictates that Sj(O) = 8j(sf) = 0. Then with use of eq.

(21) one may recast eq. (A2) as follows

P = 2LR s' J1 .jsin(R)ds

= 8j Ii dS

=SUd[v] (A3)

by means of eq.(25).
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APPENDIX B: DIFFUSIONAL TERMS AND THE FINITE

ELEMENT METHOD

Integrating eq. (22), one finds with use of eq. (23)

g(s) s(s) (B1)

where

g(s)= f i,.(s')sin sj ds' (B2)

At the pole of the particle, sr-J, i is zero because for any value of v,, (s) the

numerator g(s) in eq. (B1) goes to zero faster than the denominator sin(RJ.

Therefore, with j(s) given by eqs. (B1) and (B2), condition (23) may be restated

as

g(s1 ) =0 (B3)

The normal velocity v. along the interface is given as

V n: V~ sin -!) + vC (134)

where v. and v. are the velocity components in the r and z directions (see

Figure 8). Following Needleman and Rice (1980), let us consider the finite

element interpolation scheme for the velocity
N

i=1

N
vZ = 10i- (s) V'

i=1 (B5)
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where v' and v' are the nodal velocity components of node i on the interface,

N is the total number of interface nodes and Oi(s) is the standard linear

interpolation function along the element side on the interface such that

s- s i_• for s,.• _< s < s '

Si-Si-I

O(S) for si <s5s +1  (B6)
Si+1 Si

0 for $ < S1  or s > Sill

Function O (s) describes a linear interpolation along the interface side of the

8-noded quadratic isoparametric element that was used to model the creep

deformation of the matrix. The node at si represents the middle node

whereas those at Si., and si j represent the two corner nodes of the element.

For compatible deformation, velocity of the middle node is required to be the

mean of the two corner node velocities. The function g(s) can be expressed in

terms of nodal velocities by means of eqs. (B4) and (B5)

Ng(s) = D(gi (s) vi, (S) + gi, (S) vi (s)) (137)
i=]

where

g((s) = f(s'sin2 (R)ds' (B8)

g'(s)= f54(s')sin S Cos(S' ds' (B9)g f(s (R=R

The functions g'(s) and g'(s) are computed analytically by using eq. (B6).

Generalizing eq. (137), one writes eq. (131) as follows
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2N

where gi(s) is either of g"(s) or g'(s), and v1 (s) is either of vi(s) or v'(s).

Substituting eq. (B10) into eq. (25), one finds the finite element method

expression for functional Ud [v] which is

U,d [] = v, K' v, (BI1)

where

Kd= 7R r, g1(s) g'(s) ds (B12)
ij J"sin j)

Summation from I to 2N is implied over a repeated index. Matrix Kd is

symmetric but not banded. However, it is constant, independent of the

velocity y, and as such it is only computed once for any given D and particle

shape. The matrix Kd is added to the other finite element stiffness

contributions arising from eq. (24).
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FIGURE CAPTIONS

1. Experimentally measured relative strength X of -y-TiAl matrix

composite reinforced with Ti 2 AIC platelets as a function of

temperature (Rosler et al. (1990)). The parameter X gives the composite

strength d normalized by the matrix strength a at the same strain rate.

2. The axisymmetric cylindrical unit cell loaded with an average axial

stress f and experiencing a strain rate L in uniaxial tension.

3. Models for interface slip. An applied shear stress T. causes a sliding

velocity v,; i) no slip interface; ii) interface slip as a result of a thin

layer of weak material; iii) interface slip due to short range diffusion.

4. Summary of the boundary value problem with the no slip condition

(. = co) or the linear slip rheology.

5. Composite relative strength X,= (•)/ (•) as a function of the

dimensionless slip parameter ý. When • = 0, there is no slip whereas

when = oo there is no interface shear drag.

6. Contours of normalized hydrostatic stress k ,/3(y for the same strain

rate and matrix material; a) when the interface has no slip or diffusive

mass transport; b) when the interface slips freely but there is no mass

transport; c) when the interface slips freely and there is interface mass

transport by diffusion; d) when the interface slips freely and mass

transport by diffusion is very fast.
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7. Long range mass transport at the interface by diffusion

8. Summary of the boundary value problem with free slip and long range

diffusion at the intcrface

9. Composite relative strength X = (E) / a(•) as a function of the

dimensionless long range diffusion parameter X. When X = 0, there is

no interface mass transport. When X is large, mass transport on the

interface is very fast.
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Summary: An asymptotic analysis is presented for the power law creep of a matrix

containing discontinuous rigid aligned fibers. The fibers analyzed have a high aspect ratio. As a

result, the fiber length is much greater than both the fiber diameter and the spacing between

neighboring fibers. For this situation, flow around the fiber ends can be neglected when the

creep strength is being calculated. When the matrix is not slipping on the fiber surface or is

nearly' stuck, shearing flow dominates the behavior. The radial gradient of shear stress is

balanced by the axial gradient of hydrostatic stress. Longitudinal, radial and circumferential

deviatoric stresses are negligible. The resulting power law creep rate of the composite material is

inversely proportional to the fiber aspect ratio raised to the power 1 + 1/n where n is the creep

index. The fiber volume fraction also influences the creep rate. When the matrix slips freely on

the fiber surface, or nearly so, stretching dominates the matrix flow. In this situation, the

composite creep strength is not much better than the unreinforced matrix.

List of Symbols

Note: superposed carat indicates a physical variable; a symbol without a carat is normalized and
A AA A

dimensionless: e.g. a is the fiber radius; a is a/b where b is the unit cell radius.

A
a fiber radius
A

b unit cell radius

B matrix creep rheology parameter

D function of geometry and creep parameters; controls the creep strength

e axial strain rate

F function for radial distribution of axial velocity

G function controlling hydrostatic stress distribution
A

L fiber half length

m interface drag exponent
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n matrix creep exponent

N higher order term in creep strength
A
r radial coordinate

S relative creep strength of composite material

S scaled creep strength in excess of matrix strength

Sk same as s evaluated from ref. [IJ

-S average radial stress

S stress deviator

V velocity

Vf fiber volume fraction
A
z axial coordinate

AA

X L/a fiber aspect ratio
A ^^
b/L small parameter

Se effective strain rate

A A1 b = 1/8

A

p. interface drag parameter

p integration variable
A
G hydrostatic stress

a stress tensor
A
Ga macroscopic ax'al stress

Of fiber axial stress
A

Om matrix axial stress
AA tensile equivalent stress

. = (e/B6))/n parameter for stress normalization

8 circumferential coordinate
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Introduction

Cell models are popular and effective for estimatin- the creep strength of metal niatrix

fiber reinforced composites and such an approach has been used by Kelly and Street (1972).

Dragone and Nix (1990), Goto and McLean (1991) and Bao, Hutchinson and McMeeking

(1991). For aligned discontinuous fibers, an individual reinforcement is considered embedded in

a unit cell of the matrix materiai such that the volume ratio of fiber to matrix in the unit cell

equals the average ratio in tt:: composite material. Boundary conditions to cause the

deformation are imposed on the perimeter of the unit cell to enforce periodicity and symmetry.

For the creep response to tensile stresses align"'- with the axis of circular fibers, it is sufficient to

calculate the behavior of an axisymmetric cell such as shown in Fig. 1. The deformation

imposed on the cell forces it to retain its circular cylindrical shape. Each point on the surface of

the cell is free of shear traction. The average transverse stress on the cell is zero and appropriate

conditions are imposed at the interface betwecn the fiber and the matrix material. In the

annotations on Fig. I the conditions appropriate to an interff.ce around a rigid fiber without

debonds but with a nonlinear viscous sliding behavior are stated. In general, however, any

physical assumption can be incorporated into the cell model such as fiber elasticity or creep,

debonding of the interface etc..

Cell models usually require a numerical treatment as undertaken by Dragone and Nix

(1990) and Bao et al. (1991). However, in certain circumstances an approximate model is

accurate and can be analyzed without recourse to complete numerical treatment. This approach

has been used by Kelly and Street (1972) and Goto and McLean (1991). One such circumstance

is when the fibers are aligned and have an aspect ratio which is high and a volume fraction that is

moderate to high. Then the matrix segment around the fiber (with section ABCD in Fig. 1) is

slender and can be readily analyzed with approximate flow fields. In addition, the flow in the

remaining matrix segment at the fiber ends does not have to be analyzed accurately because it

contributes little to the yield or creep strength compared to the matrix around the fiber. That is,
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when the fiber asp-ct ratio is high, the energy dissipation in the fiber end regiors during t' r itri\

creep is negligible compared to the energy dissipation rate in the mairix surroundifg, t(lie fiber.

The creep strength is directly related to the energy dissipation rate, so it can be analyzed h1

calculating the major contributions to the energy dissipation rate. In this paper. that is achieved

by analyzing the creeping flow of the matrix adjacent to the fiber sides. If this approach is

unsatisfactory in a particular case, it can always be rectified by considering longer fibers,. thereby

making the fiber end regions relatively less important. In this sense, the analysis can always be

justified by taking the asymptotic limit of extremely Iong fibers. However, the analysis is

proposed as being justifiable for fibers with a range of finite aspect ratios.

The issue has been studied by Bao et al. (1990) for layered composites with perfectly

plastic matrices. Bao et al. found that less than 10% of the yield strength is due to the end region

when the volume fraction of rigid reinforcements is 25% and their aspect ratio is 100. For

smaller aspect ratios the contribution from the end region is a higher fraction but can be modelled

in an ad hoc manner as was demonstrated by Bao et al. (1990). In addition, the aspect ratio of

the cell relative to the aspect ratio of the fiber is known to affect the prediction of strength

significantly which was demonstrated by Bao et al. (1991). Thus, it is likely that the choice ol

aspect ratio of the cell will also influence how much of the strength is due to the matrix material

around the fiber compared to the amount due to the material at the fiber ends. For example,

choosing the aspect ratio of the cell to be the same as the aspect ratio of the fiber, as Bao et al.

(1990) did, is likely to exaggerate the importance of the fiber end region for high aspect ratio

cases. A perhaps more sensible choice, in which the distance between the fiber and the cell edge

is the same at the end and on the side is likely to diminish the importance of the matrix at the

fiber ends and so the 10% contribution mentioned above is probably an overestimate. At the

other extreme of the rheology, namely a linearly viscous matrix, an argument can be made that as

well as fiber end regions occupying relatively small volumes of the total composite

microstructure, any nonuniformity of flow which they induce will be confined to the fiber end
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region by a St. Venant effect. Thus. for all types of matrix an analysis coriccrnied oil)v waNh lh"

matrix material surrounding the fibers circumferentiallv can be justified in certain caN..

In particuk'r. the problem of a high aspect ratio ricid fiber embedded in a poaker Jay

creeping matrix can be analyzed in terms of the matrix material around the fiber. The cull sho'w.

in Fig. I will be used. The fiber is bonded to the matrix so that the radial velocity at the fiber i'

zero. However, it is assumed that the bond, or thir. layer of interphase material at the interface.

has a power law rheolo-N' of its own which allows slip of the matrix relative to the fiber. The

end of the fiber is bonded strongly to the matrix as well, so that matrix incompressibility forces a

net matrix flow parallel to the fiber. The axisymmetric quasistatic creeping response to an axial

stress is considered. A power law rheology is assumed so that the analysis represents the steady

state creep of metal or ceramic matrices around rigid (e.g. ceramic) fibers.

Problem Formulation

The domain of the problem is the axisymmetric region with section ABCD in Fig. I
A A A A A"(a < r • b; 0 Q z _ L). In cylindrical polar coordinates, the governing equilibrium equations

neglecting inertia and body forces are

¶rr + Orr-Goo + 8 ±Trz 0 o
ir r Z (1)

STrz + + - =z 0
ar r Z (2)

where a is a scaled stress such that

A
0 (3)
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A

with 5 being the Cauchv stress and X a scaling parameter to be discussed later. The components

r and z are scaled measures of position defined by

A A

r = br (4}

A A

and z = Lz (5)

A A A A

where r, z, b and L are specified in Fig. 1. The parameter S is such that

AA

A=b/L (6)

and in the problems to be analyzed is much less than 1. The choice of differential scaling for r

and z introduces a coordinate stretching transformation (Van Dyke, 1975) which will be useful in

the subsequent analysis.

The matrix creeps with a power law incompressible rheology given by

eij = B &n-e

=2 B (7)

A

where e is the strain rate, S is the deviatoric stress given by

A A A

Sij = Oij ij(8)

eA (=A 
SA

where (= kk/3) is the hydrostatic part of the stress, Ge is the effective stress such that

2e = (9)
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and 11 is a niatenat constant wni 1.n is. dej.yCnldClu ()It lllllp riatu . \u t thi u:• 1 :a\al

stress the axial strain rate equals 13 times the nth power of the stress,. In terms .f s"aled varoables,

the creep law can be written as

ar 3 Gn-I s rr3r 10i I

Vr - 3 n-I

r 2 ( 12c S0 II

,5 S v3 -Szz

az 2 e 12)

aVz +IVr n-tS+ 5~ - 3•e (•r

er az (131)

A
where v is the velocity and

A A
v-b B In v. (14)

On AB (z = 0) the boundary conditions by symmetry are

vz (r, 0) = 0 (15)

arz (r, 0) = 0. (16)

AA
On AD (r = a = a/b) one boundary condition is

Vr (a, z) = 0 (17)

4F:MS20(9M2/922)4:46 PM/mcf



while the slip condition (see Fig. 1) becomes

V7, (a. Z) : T•/P (18

where

A A y-

[. tB b •-.•9

A

and pt is a slip parameter for the interface. It should be noted that the last boundary condition can

represent a variety of physical situations. One possibility is that there is a thin but distinct
A

interphase of thickness t so that Vz (a, z)/t is r t ithe interphase. Eq. (18) then

implies that the interphase is subject to power law creep but with an exponent m and the

coefficient in the creep law is 103 t) replacing B in eq. (7). Another possibility is that

there is no interphase but instead the fiber has a rough surface over which the matrix must flow

even though the bond between the matrix and the fiber is relatively weak in shear. In that case,
A

the index m would equal n and the slip parameter p. would depend on the roughness of the fiber

surface which would provide drag.

On BC (r = 1) the boundary conditions are

Yrz (1, Z) 0 (20)

and

Vr (1, Z) = 2 (21)

where
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e B {--,22

is the axial strain rate. The condition in eq. (21) means that the scaled axial strain rate i. equal to

6. This choice is arbitrary, though convenient. As a consequence, eq. (221 establishes 1 in

terms of e, the axial strain rate in physical variables. The boundary condition. eq. (21) states thýý(

the unit cell remains a cylinder of uniform diameter. As a result, the normal stress (5, is not

uniformly zero on r = 1. However, the average of G, on r = 1 can he set to zero so that

f 1(,(1z)d
0 z = (23)

to ensure that the transverse stress is approximately zero. The approximation arises because the

cell extends a small distance above C, but that portion is neglected. The boundary condition

eq. (23) can be met through adjustment of the hydrostatic stress.

Note that no explicit boundarv conditions are posed for CD. The average stress there will
A

be of interest and determines Ga. The creep strength S of the composite material is defined as the

average axial stress in the composite at a given axial strain rate divided by the stress in the matrix

alone at the same axial strain rate. That is

S = ae)/(ef) (24)

A.
where Ga is a function of the axial strain rate e.

Asymptotic Analysis

A perturbation series solution will be developed. It will have much in common with the

outer solution for a plane strain power law squeeze film due to Johnson (1984). In addition,

there are boundary layers, but fully matched solutions will not be established in them. In the
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outer solution for the fiber problem, the matrix flow is dominated by shearing and the shear

stress can be expanded in integer powers of 6. so that

Grt 2 + 8 G" + 0(62).

' y rz

As a consequence ot eq. (13), Vz is 0(1 ) at leading order so

Vz = v(0) + 8v( 1 ) + 0(62). (26

Incompressibility (i.e. the sum of eq. (10-12)) then implies that

Vr = 8 v1) + 0 (52). (27)

and, apart from Grz, So is 0(8 ), so

Sr = 5 S() + 0(52) (28)
rr (8

etc.. Any gradient of Grz in the r direction must be balanced by a gradient of Oz, in the z

direction. For this to be possible, the stress Gzz must be 0(1/8) so that the contribution of the

longitudinal gradient of azz to eq. (2) is 0(1) which is the same order of magnitude as the

contribution of the shear stress gradient in eq. (2). This suggests

1=-(-1) + 0(0) + 0(5) (29)

so that the hydrostatic stress is an order of magnitude larger than the deviatoric stress.

The leading order governing equations can now be stated. With terms of higher order

omitted, it is found that eq. (1) gives
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ar (*0

while eq. (2) provides

o(0) GO a5(_])
+ r- + - 0

ar r (z)

The creep relationship of eq. (13) gives

Or -3 C•° o(°
rz (32)

where

9(O) = 43 joC( 0)1 (33)

while incompressibility provides

V ~ ~ V~r0) _- + -+ - 0a) r r a z (34)

Equations (15-23) give the boundary conditions

v \0) (r, 0) = 0 (35)

O) (r, 0) = 0 (36)
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V(I) (a. z) 0 (37)r

V(0) (a, z) = (Y(rn1) /P (38)

v( 1) (1, z) =- -- (39)r 2

(5(05)(1, Z) =0 (401)
rz

and fo ((- 1) (1, z) dz 0. (1

Solution. Equation (30) shows that 0(-I) is independent of r. Therefore, integration of

eq. (31) subject to eq. (40) gives

Y(0) = I - r( 1-l)

rz & r dz (42)

It will be confirmed that dG(&1 )/dz is positive for z > 0 and thus so is O0). Consequently

eq. (32) shows that

cV' ___) ( M___ n
2 r) dz . (43)

Integration of eq. (42) with eq. (37) provides

V(0)_= 1 -1 - a )m d(-m + F(r,a,n) fd()
42m (a dz dz Pm(44)
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where

n-In

F(r,a,n) = tip,4.

Differentiation of eq. (44) with respect to z provides the axial strain rate which is inserted into

eq. (34). Integration of eq. (34) with respect to r combined with boundary condition eq. (37) then

Fives

r = 2m1( a r dz dz

I-r )d do"-i f p F(p, a, n~ - dH f
r f t46)

The boundary condition specifying the strain rate, eq. (38), then provides the nonlinear

differential equation

[+ zi2m+1 am dz 2

where G (a, n) J p F (p, a, n) dp. (48)

This can be integrated once and boundary condition eq. (36) along with eq. (42) used to give

G (a,n) f(d +(-I) (i-a')___m+ d - m = z

dz 2m+-I a- d z 2 (49)
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This is hard to solve in ueneral when rn ; n except when n = 2 and in = 1 and %. ic %cr•,a.

Sunstantial insi,,ht and a degree of eeneralitv can be retain,.'d by choosi., i = n. A,, di>cu,,,cd

previou.SiS, this case repr-t nts that of a well bonded fiber-matrix interface with a rouiLh fihcr

surface at a tempe",r, c sufficiently high to give rise to a negligible shear strength of thc bonded

interface. Th', resistance to slip arises from the drag induced by the creep of the matrl\ a!ong the

rough 1iber surface. Alternately, it could represent the case of all inerphase with the ,ani crCCe-

,Amex as the matrix but with a different creep coefficient. The approach of using n = n pcrn'i,,

the study of the effect of a week interface and some general insights arc obtained. With rn = n,

eq. (49) provides

d z YD (SO)

where

D(a,n) 
2 2G(a,n) + a2)n+l

2n an (51)

Integration of eq. (49) and use of eq. (41) reveals that

zl+1/n n

-=2n+1

ln) (52)

The remaining significant terms in the solution are then
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Z
rz r

.1) a~4 F (r,a, n) -

+ p (1 (p a, n)' +i
r 2 - -a r r I 5

Thus the key assumption made by Kelly and Street (1972) that the velocity in the z direction il

proportional to z is correct to leading order. However, now the dependence on r has been

established too.

Boundary Layer. It is possible to proceed with the solution to higher order terms and so

establish the small corrections involved. This will not be done. However, it should be noted that

boundary layers are involved at z = 0 and at r = 1. The shear stress to leading order is zero at

those locations and thus so is the effective stress (5,. In the pure power law rheology being used

in this problem, this makes the matrix rigid to leading order at z = 0 and r = 1. However.

material is deforming at those locations and as a result the higher order terms in the deviatoric

stress in the i;rturbation series diverge there. To correct this, a boundary layer analysis is

required. However, the result of Johnson (1984) for the plane strain squeeze film indicates that

the boundary layers are passive and so do not disrupt the leading order outer solution.

Consequently, the leading order outer solution eq. (52-55) is valid. The boundary layer analysis

provides a significant currection term at higher order in the outer solution. This correction term

has not been worked out. However, the boundary layer at z = 0 can be analyzed and terms for

the correction estimated there. An overall axial balance of stress then provides the net resultant
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stress for the compoilc: material and therefore an estimate to higher order of the creep N!rcin'th ol

the compoilte. The detail: of the boundary laver results are developed in the Appendix.

Coniosite .Material Creet Response

We now have an estimate for the average axial stress at z = I In the cell. Thi,, •s liven
1by eq. (52) at z = 1 divided by 8 plus the correction S ' N arising from the analvsis of the

boundary layer at z = 0 (see Appendix eq. (A16, A22 & A28)). The correction is required at

z = I to balance the tension in the boundary layer at z = 0. Thus. the average stress at z I in

normalized variables is

n + .

6(2n + 1) Dl/n N(56

A
Clearly, as long as D is not large, the first term will be the largest contribution tOGa (see Fig. 1)

A

which represents the creep stress of the composite material. Additional contributions to Ga will

arise from the effects of matrix flow around the fiber end. This term may be of the same order of

magnitude as the boundary layer term N, but the fiber end flow term is difficult to estimate.

Although it may be inconsistent, we will simply omit the fiber end flow term but include the

boundary layer term. It is hoped that the result will then be meaningful for low fiber volume

fractions where the fiber end flow term will tend to be small. In any case, as long as D is not

large, the discrepancy relates only to a higher order term and the creep behavior predicted by the

leading order term in eq. (56) is still reliable. The omission will be more serious in the case of

low drag fiber-matrix interfaces with moderate to high volume fractions of fibers because D

becomes large in that case. Then the fiber end term will be just as significant as the leading term

in eq. (56). The validity of the model is then doubtful.
A

The estimate for Ga is obtained from eq. (56) in physical variables. Accordingly
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L ~n
=a +LNn 5;1

b(2n±)) + 1 D 1 /57

^+ NY1 L () (7

A A
where X lb. In turn, the creep strength is

S (2n+1)D/n +N

Note that the term S functions as a dimensionless reference stress (Leckie, 1986) for the creep

behavior of the composite as in

(A aB (S)n. (59)

The results will be left in the form presented in eq. (57 & 58) even though the dependence on

parameters like fiber volume fraction and fiber aspect ratio is not apparent. The forms presented,

in terms of a and X, are more versatile with the advantage that there is no assumption dependent

conversion from a and X to volume fraction and fiber aspect ratio. However, such conversions

can be done easily by the user of the results. For example, Kelly and Street (1972) neglected the

ends of the unit cell and assumed that ý is half the nearest neighbor center to center spacing in a

hexagonal array of fibers. In that case

AA
a a/b = (2,,F3 Vf/lr)1/2 (60)

where Vf is the fiber volume fraction. On the other hand, if the unit cell is assumed to have the

same aspect ratio as the fiber, then
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a = V t(('1

Therefore. it is best to avoid any conversion and leave the user of the reCsults to choose an

approach which is appropriate to the material of interest.

In anN' case. since

A A A A AA
= L/b = (L/a) (a/b) (62)

SAt

X will be proportional to the aspect ratio of the fiber a = L/a. ThereforeI the creep strength S.

eq. (58), depends relatively strongly on the fiber aspect ratio, being proportional to U I+ /n. This

ranges from a quadratic dependence for linear viscosity to nearly linear for high n. This

dependence was identified by Kelly and Street (1972). As the fiber volume fraction goes up, a

will increase and be around unity for fiber volume fractions around unity. This will cause D to

become very small or zero, predicting very large or infinite creep strengths. This locking up is

present in the model of Kelly and Street (1972), occuring at Vf = 0.91 in that case, which is

when fibers in a hexagonal array touch each other.

As the fiber volume fraction goes to zero with . finite, a will disappear and so will the

creep strength predicted by the first term in eq. (58). The second term, N, then provides the

creep strength, which will be unity according to eq. (A22). Returning to the general case,

consider what happens if p. - 0. This is the zero drag case and eq. (51) makes it clear that

D -4 -o. Consequently, the creep strength is given then by N, expressed in this case by

eq. (A28). Results for N for several values of n are plotted in Fig. 2. The values are less than or

equal to unity, indicating that the composite will be weaker than the matrix alone. This effect

occurs because the fibers act only to fill cylindrical holes in the matrix and the composite

behavior represents the creep of a matrix filled with such cylindrical holes. It can be seen in

Fig. 2 that N is approximately given by 1-f, confirming this effect. This result is not exact
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because the effect of flow around the fiber end has been neglected. The true result is probahbl

1-f plus a small amount accounting for the fiber end effect. Hlowever, the magnitude of the

contribution due to flow around the very end of the fiber will not depend to any great extent on

the aspect ratio of the fiber. Thus, for long, discontinuous fibers, the creep strength will be

modest if the matrix is free to slip without drag relative to the fiber. This effect was apparent.

although not emphasized in the model of Kelly and Street (1972).

It is difficult to know realistic physical values of p. In addition, the model for interface

drag with m = n is of limited value although it is very similar to a form implied in the model of

Kelly and Street (1972). As the)y pointed out (in terms of their interface sliding parameter but the

implications are the same), a given value of p (less than ,-) will have a stronger effect on the

creep strength of a material with a low n compared to a high n. This arises because S is

controlled by D-l1n and 9 enters the creep strength to leading order through D. However, the

effect of a more physically realistic slip law remains to be investigated. For example, interface

diffusion tends to occur readily in metal matrix composites at creep temperatures. This will tend

to induce slipping with a linear rheology; i.e. m = I in eq. (18).

Finally, we can consider the creep strength in detail for the no slip case . = o. This is

accomplished by consideration of S = (S - 1)/cXl+l/n computed from eq. (58). This parameter is

the excess creep strength over the matrix strength normalized to make it independent of aL. The

result is plotted as a function of a2 in Fig. 3 for several creep exponents. For comparison, the

equivalent parameter from the model of Kelly and Street (1972) is graphed as well. For the latter

model, the volume fraction has been converted to a by use of eq. (60)- The result has the form

SK =(S-1)/]+I/n

= 2n+1 ,1-aD 1-a2. (63)

It can be seen in Fig. 3 that there are significant differences between the two models.
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Fiber Stresses

Fiber stresses are important because the reinforcements can crack and degrade the creep

strength when the stress exceeds the fiber strength as observed by Weber et al. (1991). In

addition, Sancakter and Zhang (1990) have demonstrated that high shear stresses on the interface

can cause interphase and matrix cracking. The shear stress at the interface between the matrix

and the fiber is directly related to the gradient of the average axial fiber stress along the fiber.

The average axial stress at any point in the fiber can be computed from a net balance of forces in

the axial direction. This requires

A , A A A A
Ga =a- Of (z) + (1 - a2 ) am (z) (64)

tA A
at any position z where Gjf is the average axial fiber stress at z and am is the average axial matrix

A
stress at z. From eq. (52) we have

B/n NnI
(1+1/n)D1 /o (65

(65)

Given eq. (57), it follows that

e. n- S •+l/n T, a -- 2 1•)+l/n n ] + N}
6f(2) ='D- --f n+l a2 a2 "l- 2n+] + (66)

A
The highest value is at z = 0 where
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=aa af (0)
n n

= JB) D 1/ 1 n+l Ia 2n+i I (07

To the neglect of N, which will be small compared to other terms when /, is large, we find

mftax2t3 a _ 2n+l-a n
8a a 2 (n+1) (68)

Thus the maximum axial fiber stress can be obtained approximately by multiplying the

composite stress by a factor given by a fairly simple formula. For example. with a2 equal to a

quarter (i.e. the fiber diameter is equal to the fiber spacing), the ratio is (7n + 4)/(n + 1) which,

for example, is equal to 6.4 for n = 4. It is interesting that the ratio is independent of the aspect

ratio of the fiber. This, however, only applies if the fiber is long enough, say with an aspect ratio

of 5 or greater.
A

A further interesting point is that the minimum matrix stress (at z = 0) is compressive.

Expressed as a fraction of the composite stress, the minimum matrix stress emin ^ (0) IS

imi
mn

Oa n + (69)

independent of the volume fraction and the fiber aspect ratio (given that the fiber aspect ratio is

high enough).
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Comparison wvith Finite Element Results

There are few finite element results available in detail for comparison. The most useful is

the analysis by Dragone and Nix (1990), who treated an aluminum alloy with 20ý( by volume of

SiC fibers. A unit cell approach was adopted and calculations performed for n = 4. The fiber

was perfectly bonded to the matrix and so the relevant comparison is with our results when

ýt = 00. A number of features found in the asymptotic analysis are apparent in their steady state

solution for CO = 5, a somewhat lower aspect ratio then we would prefer for comparison. The

stress in the matrix around the fiber is dominated by the hydrostatic stress with the hydrostatic

component apparently 25 times the longitudinal deviatoric stress. The hydrostatic stress in the

matrix varies almost linearly down the length of the fiber. (Our analysis predicts a variation with

z1.25, but it would be difficult to distinguish this from a linear behavior in numerical results).

The hydrostatic stress adjacent to the fiber is independent of distance from the fiber. The axial

stress at the fiber end is about 25% higher than the composite stress indicating an effect of flow

around the end of the fiber which we have neglected. The aspect ratio of the cell is equal to the

aspect ratio of the fiber. Therefore, by eq. (61), a2 = V2/3. For Vf = 0.2, this gives a2 = 0.34.fI

For this value of a2, we predict 4.5 for (naxl/a from eq. (68) and -0.8 for Onn /(a from eq. (69).

Dragone and Nix (1990) find these ratios at steady state to be 4.9 and -1.2 respectively. Thus

even for the low aspect ratio fiber the asymptotic analysis is reasonably good. We suspect that

most of the discrepancy is due to the stress arising from flow around the fiber ends. When the

difference between the composite stress and the stress at the fiber end is factored out, our ratios

predict the Dragone and Nix (1990) stress values almost exactly. Thus, for longer fibers, we

believe our estimates will be quite accurate even without adjustment.

The steady state strain rates computed by Dragone and Nix (1990) at 80 MPa for fibers

with aspect ratios 5, 7 & 10 are listed in Table 1. Also given is a strain rate for an aspect ratio of

20 obtained by extrapolation of the transient results. The matrix steady creep law used by

Dragone and Nix (1990) is our eq. (7) with B = 2 x 10-13 when strain rate is given in units of s"I

and stress in MPa. As noted before, n = 4. The finite element creep strength is computed from

4F:MS20(9/22/2)4:46 PM/mef



eq. (24) and the asymptotic result from eq. (58) with ji = and a2 = V,/3 = 0.34 as used in the

finite element results. N was taken to be I in eq. (58). There is reasonable agreement, The

Kelly and Street (1972) prediction for creep strength, based on our eq. (63) with N = 1, are given

in Table 1 as well under the heading "shear lag". They are well below the other results. Dragone

and Nix (1990) provide additional results in which the aspect ratio of the cell is varied and the

asymptotic solution agrees reasonably well with those as well.

Another comparison can be made with the finite element results of Bao et al. (1991). The

comparison is made in Table 2. One feature in the results of Bao et al. (1991) is the contrast with

the results of Dragone and Nix (1990). Bao et al. (1991) predict lower creep strengths as can be

seen in the results for n = 4 in Table 2. This suggests that either Dragone and Nix (1990) are in

error or Bao et al. (1991) are. However, the asymptotic analysis consistently predicts higher

strengths than Bao et al. (1991). The substantial differences are probably due to the contribution

to the creep strength in the finite element results arising from the fiber end region. The cell

length in the finite element calculations is 13times the fiber length. The portion of the cell

beyond the fiber ends as a fraction of the whole cell length is I - V1/3. This region of the cellfbey ondgi n f th c l

experiences relatively unconstrained flow compared to the matrix material surrounding the fiber

circumferentially. An estimate of the effect can be made by consideration of radial stressing.

The portion of the cell around the fiber would require a radial stress S to produce the same strain

rate as unit radial stress would produce in an unconstrained end region. Therefore, the average

radial stress on the whole cell for the same strain rate is

1+ V11 3 (S-1). (70)

This can be converted to an axial stress result by addition of hydrostatic stress. Therefore

eq. (70) with S given by the asymptotic solution provides an estimate for the axial creep strength

of a unit cell with the same aspect ratio as the fiber. In Table 2 it can be seen that S agrees better

than S with the creep strength of Bao et al. (1991). There are still discrepancies, but the
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conversion represented by eq. (70) is an approximation at best. It seems safe to conclude that the

asymptotic results should be used for cases where the fiber aspect ratio is greater than 20 so that

fiber end effects are less important.

Closure

An asymptotic solution has been presented for power law creep of a composite material

containing aligned, rigid, discontinuous, well bonded high aspect ratio fibers. The solution

exhibits several of the features assumed by Kelly and Street (1972) for their shear lag model.

These features include the linearity of the axial velocity with distance along the fiber and the

dominance of the creep strength by the shearing flow in the matrix. However, asymptotically

exact forms for the velocity and stress are provided rather than the estimates used in the shear lag

model. The asymptotic solution provides a model for the creep law of the composite material.

Although the shear lag creep law of Kelly and Street (1972) exhibits several of the characteristics

of the more exact asymptotic creep law, the shear lag model underestimates the creep strength of

the composite material. We think this arises from a stress averaging procedure used by Kelly

and Street (1972) which seems to be faulty.

The dominant characteristic of the creep law predicted by the asymptotic analysis is that

the creep strength is proportional to the fiber aspect ratio raised to the power 1 + l/n where n is

the creep exponent. In addition, the model shows that fiber-matrix interface slip can have a

disastrous effect on the creep strength of discontinuous fiber composites. If the interface has no

shear strength, the creep strength of the composite is approximately equal to the creep strength of

the matrix alone. This indicates that such a composite material would creep as fast as the

unreinforced matrix at the same applied stress. However, modest levels of interface drag can be

mitigated by very long fibers. The effect can be identified in eq. (58) where the interplay

between interface drag and aspect ratio is evident. A low drag coefficient, p., gives rise to a high

value of D. However, very long fibers will have a large aspect ratio leading to high values of X.
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"The resulting combination can lead to significant creep strengths. Thus continuous fibers, even

with occasional breaks. can provide good strengthening even when some interface slip can occur.

The asymptotic solution agrees reasonably well with finite element analyses of the

problem. The solution features in the matrix are very similar. Some adjustments have to be

made to the creep strength for some of the comparisons to account for the fact that the finite

element results were obtained typically for low aspect ratio fibers with unit cells containing

substantial volumes of relatively unconstrained matrix beyond the fiber ends. With an

appropriate adjustment, there is quite good agreement in terms of the creep strength.

Annendix:

Boundary Layer Analysis

According to Johnson (1984), the outer solution velocities eq. (54 & 55) prevail into the

boundary layer at z = 0. Thus in terms of unstretched coordinates with "1 = z/8 in the

boundary layer

vz = ---2-- a + F(ra,n)] 1
(Al)

and

vr -a ir-A2 + - fpF(pa,n)dp
rr r (A2)

An effective strain rate can be computed as
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+ = ± + + -

[r, ) 2/3 ar )

and then the constitutive law provides

2 = a v
Srr 3 en Dr r 

(A4)

=00 = l Vr3S Oe) -' r (A 5 )

2 - vz
3C " (A6)

and

1rz vz
e3 r .(A7)

The hydrostatic stress can be computed from the two equilibrium equations

a = Srr + SOSrr a arz
_ +

r r r (A8)

and

a aOrz Frz

=1 a r r (A9)
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According to Johnson 1984), on the scale of the boundary layer, the hvdrostatic stress at leading

order is uniform and given by eq. (52) with z = 0. It is sustained by tractions on the side of the

cell enforcing, the constraint that vr = -1 4 there. Therefore, the boundary condition for

evaluation of the hvdros'..tic stress is

2,0) - rr (1,0)
8(n + 1)(2n + 1) D'/n (A 10)

which ensures that eq. (23) is satisfied at higher order. At higher order, eq. (23) degenerates to a

point wise condition on (5, because Srr is uniform at r = I which is a boundary layer also.

Thus by solution of eq. (A8 & A9) subject to eq. (AIO), the stresses can be established

throughout the boundary layer at z = 0. In particular, 2zz can be computed on z = 0. This

stress at z = 0 plus the axial stress in the fiber at z = 0 must be balanced at the other fiber end

by an appropriate average stress. The leading order term in eq. (52) at z = I plus a smaller

correction arising from terms computed in eq. (A8) is required. This provides an estimate of the

creep strength of the composite material to higher order.

The form of vz is such that on z = 0

a Yrz 1 D-" z

= -- e

i 1 3 irar7 (All)

because, through (DJ vr/) r)2, Fe depends on 112 . Therefore, on z = 0, eq. (A8) becomes

2hr = -- n 2 f[Vr 1avr ad2Vzj

ar 3 ce r r Or 2 ari1i (A12)

Since a vJD r = 0 there, on z = 0

4F:MS20(9t2!92)4:46 PM/mcf



29

LE = = ,
ar r 11 A13)

with v2z and Vr given by eq. (Al & A2). To compute the higher order terms in G,• on z = 0.

eq. (A 12) can be integrated subject to

01r(1,0) = 0 (A 14)

which is equivalent to eq. (AI0) with the leading order term (i.e. the first term on the right hand

side) omitted. The result for (., (r, 0) can be used to compute the axial stress from

Gzz (r, 0) = 0, (r, 0) + Szz (r, 0) - Srr (r, 0). (A15)

The net resultant in the boundary layer is

27t razz (r, 0)rdr = 5Nt (A 16)

which defines N. Two cases can be considered. One situation arises if g. is large or infinite and

there is little or no slip at the fiber matrix interface. This is the high drag case. In that situation

N only becomes important in the creep strength at small volume fractions of fibers. The other

case is where . is small or zero so that the matrix is free or almost free to slip against the fiber

without drag.

High drag interface. In this case, D in eq. (51) is large only if a is small. With D large, the

leading order stress estimate at z = I can be modest in magnitude and the higher order

corrections are significant. Investigation of the elocities in eq. (A l & A2) reveals that when a is
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small, the term containing ý1 can be neglected and the effective strain rate V, on z S( \ all'

unifi--m except when r is just slightly larger than a. However, the strain rate, go rapidly to zero

at r = a and accordingT to eq. (A4-A6) so do the deviatoric stresses. Con.sequently,. th small

region around the fiber with r slightly larger than a will contribute very little to the stres,

resultant N. In view of this, a treatment will be reasonably accurate with Ce taken to be unit on-m

everywhere on z = 0 but with the strain rate components allowed to vary otherwise according to

eq. (AI & A2).

With the strain rates computed from eq. (Al & A2) (with p -- o) eq. (A 12) becomes

aayr• 2 1-n6 2 r 11 aF(r,a,n)
2 nr pF(p,a,n)dp -- F(ran) +

3, r 2 Dr j. A17)

With Ec uniform, this integrates, subject to eq. (A14) to give

Con- 2= E-,n8 pF(p,a~n)dp - G(a,n) - 1-F(r, a, n) + I-F(1, a, n)
3 efa G 2 2 (A18)

On z = 0, from eq. (A4 & A6)

Szz - Srr 3 E e n [2F(r,a,n) - a PF(p,a,n)dP] (A19)

so

2 L0-.__ + 1F(1,a,n) - G(a,n)1
3= e D1 2 .[Fr2 (A20)

which is valid for r close to I but suspect for r close to a. Calculation of N from eq. (A 18) then

gives
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N 8-n cc -(2+a) G(an) + - a 2  (1,a,n)1

This result is most readily utilized for even integer positive values of n, In that case, calcu!ation

of F ( 1, a, n) and G (a. n) can be carried out by binomial expansion. In addition. the lcading

temis in Ce can be computed at r = 1. The result to leading terms is

(2n 2 - 2n - 7)(n-l) - .

6n(n - 3) (A22)

Low drag interfan In this situation, AI is close to zero. The limiting case of 0 - ( 0 (no drag)

will be considered. As a consequence, the velocities in eq. (Al & A2) become

118
Vz= 1-a 2  (A23)

and

Vr = _a r-1 -(A24)

and D = oo. This is a planar flow in the fiber direction, as would be expected when there is no

drag. The effective strain rate is

5 la _4t
CL + 1 4

1-a 2 3 r4 (A25)

and integration of eq. (A 12) gives on z = 0
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(5 -2 1 +d
Orr 2 rK61 i ~ d,- I_--a, L 7J 7r L2

The deviatoric stresses are such that

4 -s2nSzz - rr - +r - -
3 3 2 2 r2 (A27

Finally, the ,,erss Ozz., the sum of eq. (A26 & A27), can be integrated to give

4/3 1 1 a4] [3r+ a4]
N (1_a /n a 3 r4 + 2r 3 (A28r

Note that when a = 0, N = 1, as in eq. (A22).
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TABLE 1

Comparison of steady state creep results from the finite element calculations of Dragone and Nix

(1990) and the asymptotic solution. The results are for 20% SiC fibers in 6061 Al at 80 NIPa.

( ) -extrapolated.

Fiber Aspect Ratio Steady Creep Rate Creep Strength S

Finite element Finite elements Asymptotic Shear Lag

results (Dragone and (Dragone and analysis (Kelly and

Nix) Nix) Street)

S-
1

5 3.5 x 10-8 3.9 4.5 2.7

7 1 x 10-8  5.3 6.4 3.6

10 1.5 x 10-9 8.6 9.4 5.0

20 (7 x 10- 11) (18.5) 21 10.5
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TABLE 2

Comparison of creep strength calculated by Bao et al. (1991) by finite elements with the

asymptotic solution. The adjusted column listsS = 1 + V 3 (S - 1 ) based on the asymptotic

solution.

Fiber Volume Fiber Aspect Creep Index Creep Strength S

Fraction Vf Ratio a n

Finite Asymptotic Adjusted

Elements Analysis
(Bao et al.)

0.1 5 5 1.8 2.5 1.7

0.1 5 10 1.6 2.2 1.5

0.1 10 5 2.4 4.3 2.5

0.1 10 10 2.1 3.5 2.2

0.2 5 4 3.4 4.5 3.1

0.2 5 5 3.3 4.1 2.8

0.2 5 10 2.9 3.3 2.3

0.2 10 4 4.7 9.4 5.9

0.2 10 5 4.5 8.1 5.2

0.2 10 10 3.9 5.8 3.8
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List of Figure Captions

Figzure I Unit cell for matrix creep analysis.

Figure 2 Creep strength of a material with zero drag between the fiber and the matrix.

Figure 3 Excess creep strength of a material with no slip between the fiber and the matrix.

The result is normalized by the fiber aspect ratio raised to the power 1 + I/n.
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ABSTRACT

Experimental studies conducted on particulate-reinforced Al alloys are used to

critically assess flow models. For this purpose, the influence of thermal epansion misfit

and of reverse loading provide a particularly critical assessment. Comparison with

models indicates that continuum cell calculations provide good predictions of trends,

subject to an in situ matrix strength that may differ from that for the unreinforced alloy.
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1. INTRODUCTION

For metal matrix composites with well-bonded discontinuous reinforcements (such

as Al alloys with either SiC or A120 3 particulates, platelets or whiskers), the dependence

of the mechanical properties on such microstructural parameters aq the matrix yield

strength, the reinforcement volume fraction, shape, orientation and spacing are not well

defined. However, a recent viewpoint set has clarified some of the issues.1 There is now

compelling evidence that at plastic strains exceeding the yield strain by a factor 3-5, the

flow properties are dominated by plastic constraint in the matrix.2,3 Such constraints are

governed by the flow incompatibility between the elastic reinforcements and the matrix

and lead to important effects of the reinforcement volume fraction, f, aspect ratio A,

work-hardening coefficient, N, and spatial arrangement S, as well as the thermal

expansion mismatch with the matrix,4 but are independent of the reinforcement spacing

(at fixed f, A and S). Comprehensive calculations concerning trends in flow properties

now exist.3

At smaller plastic strains, the data are indicative of an explicit effect of reinforcement

size, R (or spacing, k) on the initial flow strength.1,5,6 Such effects cannot be associated

with plastic constraint, but are presumed to reflect the matrix substructure, on the scale

of dislocation cells. Thermal expansion misfit, as well as deformation processing, have

been regarded as important factors controlling the dislocation substructure.1 ,6,7 In a

continuing attempt to quantify the realm wherein (continuum) plastic constraint

approaches provide an adequate material representation, the present study selects

material characteristics believed to provide a critical test of the utility of the approach.

These are the effects of thermal expansion misfit as well as reverse loading, evident in the

Bauschinger effect.
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2. EXPERIMENTAL

Aluminum matrix composites containing SiC particulate reinforcements with

volume fractions ranging from 0.2 to 0.5 were manufactured by squec -2 casting.6 The

particulates were incorporated into matrices of both pure Al and a Al-3 wt % Mg solid

solution strengthened alloy. Some experiments were conducted with the material in the

as-cast condition. Others were performed after the material had been subject to

extrusion. Beams were cut from the as-cast and hot-worked billets using a high-speed

diamond saw. The surfaces of the beams were polished using diamond media.

Various types of measurements have been made, using tensile, compressive and

flexural loading, with emphasis on the latter, as needed to examine the small strain, non-

linear behavior. These tests were conducted using strain gauges to measure strains and

were performed under monotonic loading, as well as fully reversed loading at fixed

strain-amplitude. Most tests were conducted on composites with small particles (9 pm)

to minimize the influence of reinforcement cracking.8,9 In an attempt to systematically

vary the residual stress induced by expansion misfit, specimens with 9 pm particles

were annealed in a resistance furnace at 200-525'C for 10 minutes, followed by cooling

at various rates to a range of low temperatures and then allowing the specimens to

equilibriate at room temperature. liquid nitrogen quenching (LNQ) provided the

fastest cooling rate to the lowest temperature. Air cooling to room temperature was

used as the reference condition. Effects of microstructural variability were minimized

by conducting some tests at different cooling rates on the same specimen using an

intermediate annealing step to revert the material to its reference state. Comparison

calibrations of load/deflection curves ensured that this multi-cycle testing procedure

did not induce damage and that the material had a well-defined reference state.

The microstructures of each material were characterized by transmission electron

microscope (TEM) on thin foils prepared by ion beam milling. In some cases, quenching
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was performed on the thin foils. For this purpose, the specimens were held at one

corner to avoid mechanical constraint and inserted directly into either a hot or cold

medium. This delicate handling minimized unintentional deformation of the foil, The

foils were examined in a JEOL 200 CX operating at 200 kV.

3. MECHANICAL MEASUREMENTS

Some preliminary experiments provided the following important information. The

flow properties were found to be insensitive to pre-quench annealing at all temperatures

above - 100'C. Specifically, flow strength changes induced by either quenching or

deformation (monotonic or cyclic) could be eliminated by annealing at - 100'C and slow

cooling to room temperature. Such annealing thus restored the material to its reference

strength.

Cooling to different low temperatures gave reproducibly different monotonic flow

curves at room temperature (Fig. la), although the effects are small. The lowest

temperature gave the largest initial flow strength, but the strength differential

diminished at large strains (Fig. 1b). The differential exhibited a maximum A0 5 at

strains between 0.2 and 0.8%. Most of the data emphasize this strain range. Plots of the

maximum strength differential (Fig. 2) reveal that Aas increases as either the

reinforcement volume fraction f or the matrix yield strength increase (Fig. 2a) and as the

cooling range AT increases (Fig. 2b). The reinforcement size does not have a systematic

influence on Ac 5s (Fig. 2c), except that a lower strength arises at the largest particle size

(100 pm) caused by particle cracking.9

Reverse loading experiments have indicated several systematic trends (Fig. 3). An

appreciable Bauschinger effect was evident. The differential between the forward and

reverse flow strengths Aeb (defined on Fig. 3) increased as the cyclic strain amplitude
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increased and was larger for the composites with the higher yield strength matrix

(Fig. 4).

To ;IIustrate aspects of the effects of substructure on matrix strength, 'pure' Al

materials were subjected to hot and cold extrusion to plastic strain of - 3 and tested. The

extruded material exhibited flow strengths 2-6 times that for as-cast material (Fig. 5).

4. OBSERVATIONS

Examination of thin foils in the TEM using 2-beam imaging conditions provided the

following information. In composites deformed and annealed to achieve the reference

state, dislocation cells interconnect the SiC particulates (Fig. 6a). Quenching changed the

dislocation substructure such that in the same area, the dislocation density was larger

by a factor - 3 (Fig. 6b,c). The dislocations in the quenched material occurred

predominantly around the SiC particles, where they formed tangles (Fig. 6c). However,

slip lines present on the surface of the foil indicated that some dislocations were

eliminated at the foil surface. Upon compressive deformation, the dislocation cells

decreased in size, both in the transverse and longitudinal orientations. The cell interiors

were well defined with a high level of dislocation storage in the walls. Such cell

refinement contrasts with an absence of cells found upon deformation of the matrix.

There was no TEM evidence of either precipitation in the matrix or of a reaction product

at the interface.

5. CALCULATIONS

The predicted effects of thermal expansion misfit and of reverse loading on the flow

stre 'gth of particulate reinforced composites are addressed within the framework of

continuum plasticity by using finite element cell calculations. The procedures used have
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been described elsewhere. 2,3,4,10 The variables are f, A, N and S. The calculations are

conducted for axisymmetric cells containing unit cylindrical reinforcements arranged

within a regular array, subject to periodic boundary conditions. The imposed loading is

uniaxial. The effects of thermal expansion misfit are simulated by imposing a misfit

strain,

ST = 3A(xAT/(1 - v)

where A(x is the thermal expansion coefficient difference between the particulate and

the matrix, V is Poisson's ratio and AT is the cooling range. The results of such

calculations are presented in terms of normalized parameters

I = a/ao; E = E/1o; X = AaAT/eo

where Go is the uniaxial yield strength and F. the yield strain of the matrix, 0 is the

stress and e the strain. Calculations are performed for a work hardening exponent

N = 5 with X in the range 1-10, typical of the magnitudes applicable to the present

composites, and for reinforcement volume fractions in the range 0.1 to 0.5 (Fig. 7). As

noted in prior calculations, 2,4 when X 5 1, misfit induced yielding in the matrix lowers

the initial flow strength. This occurs because the residual stress in the matrix is at yield

and has sufficient magnitude to induce immediate plastic flow upon loading. However,

when the matrix exhibits appreciable work hardening (N Z 10), composit : hardening

occurs more rapidly in the presence of misfit, because elastic unloading proceeds in some

regions of the misfit deformation zone around the reinforcements. Finally, at large

strains (e 5 5 so), when the deformation field becomes dominated by the applied

loading, the flow curves tend to merge. Such behavior is characteristic of that found in
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plasticity problems involving misfit. 11 The trends in the maximum strength differential,

As 5 /ao, with f and k, calculated for N = 5, are plotted on Fig. 8.

The behavior subject to reverse loading again involves consideration of the internal

stresses. In this case, such stresses develop during forward deformation, which then

influence the flow that occurs when the loading is reversed. Calculations of the effects

of reverse loading for perfect plasticity (N = -), without misfit (Fig. 9), reveal that flow

in compression, following initial tensile deformation, occurs at a reduced strength level

(again because of the residual stress in the matrix) and diminishes at large strains.

Furthermore, the flow strength differential A(b/ao also becomes larger as the

reinforcement concentration, f, increases (Fig. 10). Calculations with work hardening

have not been conducted. But the analogous effects of N on misfit induced changes in

flow strength2,4 suggest that the differential would persist to larger strains as the

hardening increases (N becomes smaller).

6. COMPARISON BETWEEN EXPERIMENT AND THEORY

6.1 Thermal Expansion Misfit

Comparison of the measured strength differentials with the continuum calculations

is achieved by compiling the data from Fig. 2 and superposing on the calculated curves

(Fig. 8), with the matrix flow strength, ao, regarded as an unknown. For this purpose, it is

noted that Ax - 2 x 10-5 C-1 and 6 - 10-3, such that ) varies between - 1 and 5 for

the AT range used in the present experiments. The comparison commences with the

experimental results for the effect of volume fraction. For the case k = 5 (Fig. 2a), fitting

the experiments to the calculations, at f = 0.4 (Fig. 8), infers matrix yield strengths,

0o - 100 MPa for the Al system and 04o = 170 MPa for the AI/3 Mg system. By fixing

these values for 70. trends with f, AT and R can be compared with experiments, as shown

on Figs. 2 and 8. Most of the key features predicted by the calculations are found to be
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consistent with the data. Notably, the strength differential data Aas for both systems (Al

and Al/3 Mg) superpose when normalized with r,, (Fig. 8). Furthermore, ALs increases as

either f increases (Fig. 2a) or AT increases (Fig. 2b), but is independent of R (Fig. 2c).

The in situ matrix yield strengths inferred using this approach are larger than those

found for the monolithic matrices (Table I). Furthermore, the differential is greater for

Al than Al/3 Mg matrices, as also found in other recent studies. 12,13 The TEM studies

provide no evidence that such matrix strengthening could oe associated with

compositional effects (such as solute and precipitate hardening). However, the

dislocation substructure present in the composites in the reference state (Fig. 6a) may

provide a forest hardening term that superposes on the matrix strength. This possibility

is qualitatively supported by the strong substructure effects on flow strength found

after extrusion (Fig. 5).

6.2 Reverse Loading

An assessment of the continuum predictions of reverse loading effects is made by

normalizing the strength differential Aab data (Fig. 4) with co and replotting on Fig. 10.

The normalization again unifies the data for the same ao used to rationalize the misfit data.

Furthermore, the experimental stress differentials are of the same order as the

predictions. However, the peak stress is found to occur at much larger strains than

predicted. Two factors influence this discrepancy. i) The calculations have not included

work hardening, which should have a substantial effect, both on the magnitude of the

stress differential (Aab/Oo) and especially on the relative strains at which this strength

differential persists. ii) The measurements involve thermal expansion misfit which may

also influence AOb. Such misfit has not been included in the calculations. Further

calculations would be needed to address these factors.
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7. CONCLUDING REMARKS

Various trends in the flow strength of particulate reinforced metal matrix composites

have been found to be consistent with finite element cell calculations. These include

effects of thermal expansion misfit and of reverse loading.4 To achieve good correlations

between experiments and calculations, it has been necessary to invoke a matrix

reference strength ao that differs from that for the unreinforced alloy. However, once

the reference strength for a given matrix has been identified, the same ao appears to

apply throughout the range of reinforcements and testing variables associated with that

matrix. It remains to understand the factors that dictate this matrix strength.
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t A widely invoked dislocation model does not have such good predictive ability (Appendix).
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APPENDIX

Dislocation Approach For Misfit Strengthening5 o6

The thermal misfit strain in the matrix on cooling the composite through a

temperature range AT is

EM 3AcATf
(I -V) (Al)

where Acz is the difference in thermal expansion between SiC (a = 4 x 10-6 K-1 ) and

AI(a = 24 x 10-6 K-1) and v is Poisson's ratio. The resulting dislocation density, p, is

related to the thermal strain through

p = Em/bi (A2)

where b is the Burgers' vector and 1 is the mean slip distance in the matrix, given by

7 = Rf (A3)

where R is the particle size.

The flow stress ? due to the presence of these dislocations is,

U = Ai• b• (A4)

where A is a constant of order unity and ga is the shear modulus of the matrix.
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Combining Eqns. (AI) to (A4), the flow strength becomes,

U = Ngbfy .A.AT
(1-v)bR) (A5)

Note that the flow stress is -ndeper.'ent of the matrix yield stress, 0o and scales inverFlvI

with the particle size. Such characteristics are not apparent in the present experiments

(Fig. 2).
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FIGURE CAPTIONS

Fig. 1. a) Typical flow curves at small strains obtained on specimens cooled to

different temperatures (Al matrix, f = 0.3, R = 9 Pm).

b) The effects of large strains on the difference between the flow curves in the

reference state and when cooled to liquid nitrogen temperature (Ai/3 Mg

matrix, f = 0.5, R = 9 pm ).

Fig. 2. Trends in thrmal expansion misfit strength differentia! A(a with

a) reinforcement volume fraction for both Al and Al/3 Mg matrices

(R = 9 p.m, LNQ), b) cooling range AT for Al (f = 0.4, R = 9 pn),

c) reinforcement size for A1/3 Mg (f = 0.5, LNQ). Also shown are predicted

values for the uniaxial yield strengths, (Yo, indicated on the figures.

Fig. 3. A loading cycle conducted on a material cooled in liquid nitrogen.

Comparison with the flow strength of the material in the reference state

(R = 9pim,f = 0.5).

Fig. 4. Trends in the strength differential Aab with plastic strain amplitude for both

Al/3 Mg and Al matrix materials in reference state (f = 0.5, R = 9 Pan). Also

shown is the curve predicted for a non-hardening matrix.

Fig. 5. Effects of extrusion on the flow strength of 'pure' Al.

Fig. 6. TEM observations of matrix dislocations a) hot-worked deformation cell

substructure b) and c) same area of composite after annealing and quenching

into water, respectively.

Fig. 7. Calculated flow curves with and without thermal expansion misfit

(X = AcAT/s 0 = 5,N = 5).

Fig. 8. Effects of reinforcement volume fraction and misfit strain, a AccAT/Eo, on

the relative strength differential. Also shown are experimental results, plotted

with matrix flow strength (Yo inferred by fitting the data to the calculation at

f = 0.4, with X = 5. All other points are plotted using these (Yo. The inferred

ao are 100 MPa for Al mr.trices and 170 MPa for A1/3 Mg matrices.

KJS-Evans-16.O-R.TA-RsdI Stm 91/O4/04-2:00 PM.1 1/11/91 14



Fig. 9. Forward and reverse loading calculations for two different reinforcement

volume fractions and a perfectly plastic matrix (N =
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CHAPTER n

CONTINUUM MODELS FOR DEFORMATION: DISCONTINUOUS

REINFORCEMENTS

J. W. Hutchinson and R.M. McMeeking

The assumption underlying the mechanics of particle reinforcement of ductile matrix

materials presented in this chapter is that the size of the particles and the spacing between particles

are sufficiently great such that continuum plasticity can be used to characterize the deformation of

the matrix material. The continuum results discussed below are very different in character from

dislocation-based models of precipitation hardening. For example, there is a strong size effect in

precipation hardening independent of particle volume fraction, while there is no size effect

predicted by the conventional continuum models since the constitutive model for the matrix has no

length scale associated with it. The length scale characterizing the transition between the two

approaches has not been established and is undoubtedly material dependent and perhaps dependent

on whether the description is for rate-independent plasticity or creep. For continuum plasticity to

be valid it is necessary that the particle size and spacing be large compared to the dominant scale of

the dislocation motion such as cell size. Generally, for typical metal matrix materials, it is felt that

particle sizes and spacings of several microns or more should ensure that conditions are met for

validity of the continuum description.

An independent issue is the assignment of insitu plastic properties of the matrix material

such as the flow strength and strain hardening index. It is not uncommon for the insitu properties

of the matrix to be altered from the bulk properties due to processing of the reinforced composite

system. In the approach described below, the properties of the matrix must be regarded as insitu

properties. Further discussion of this matter will be given in a later section in which comparisons

of theory and experiment are made.
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The chapter is organized as follows. The first section considers the flow strength of

perfectly plastic matrix materials. In particular, the effects of particle shape, volume fraction,

alignment and distribution will be discussed. The perfectly plastic idealization has a number of

advantages for presenting and discussing the role of particle reinforcement. It isolates the primary

strengthening effect and provides a setting for discussing the effect of matrix hardening in rate-

imdependent materials, which is the topic of the second section. This chapter does not deal with the

important question of damage development. It will be assumed that the reinforcing particles are

well bonded to the matrix and that neither the interface separates nor the particles crack. Thus, the

macroscopic stress-strain responses of the composites predicted here must be regarded as limiting

responses for systems free of damage. Section n.3 deals with residual stress development and

with the effect of these stresses on overall stress-strain behavior. Section n.4 discusses application

of the approach to creep reinforcement, including the effect of diffusional relaxation of the

reinforcement.

Much of the material presented in this chapter is drawn from two recent papers by the

authors (Bao, Hutchinson and McMeeking 1991a, 1991b). The primary emphasis is on the role of

particulate reinforcements but results on the transverse behavior of continuous aligned fiber

reinforced composites will also be included since it falls naturally within the framework for

discontinuous reinforcement. There are a number of relatively recent papers in the literature based

on the continuum approach and other chapters in this book draw on this work. Papers especially

relevant to the present chapter are those by Christman, Needleman and Suresh 1989; Levy and

Papazian 1990; Tvergaard 1990; and Dragone and Nix 1990.

n. 1 FLOW STRENGTH OF COMPOSITES WITH NON-HARDENING MATRICES

With the exception of creep behavior dealt with in Section n.4, the matrix material will be

taken to be rate-independent. In this section the matrix will be further idealized to be elastic-

perfectly plastic with a tensile flow stress ao. A Mises yield condition is assumed such that Oe= 00

where the effective stress depends on the deviator stress components sij according to
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Oe=4 (3sjjsj/f2). Plastic strain increments are directed along the outward normal to the yield

surface, proportional to sij. The primary emphasis in this section is on the strengthening of the

composite due to the discontinuous reinforcements, which is best reflected by the increase in the

overall limit stress of the composite. Let a denote the overall tensile stress applied to the

composite in some direction. For aligned reinforcements we will be concerned with overall tension

(or compression) applied parallel to the direction of alignment, except for some examples of

continuous fiber reinforcement where the loading will be transverse to the direction of alignment.

For an elastic-perfectly plastic matrix reinforced by discontinuous reinforcements which do not

deform plastically, there is a limit value of a which is denoted here by ao. This overall limit

yield stress does not depend on the elastic moduli of either the matrix or the reinforcement nor

does it depend on the absolute size of the reinforcing particles. It does depend on the volume

fraction of the reinforcement phase and on other details of the reinforcement such as shape and

alignment. It is these dependencies which will be presented below.

n. 1. 1 Aligned Discontinuous Reinforcements

An axisymmetric cell model is used to calculate the overall limit stress. This method has

been widely employed and is used by some of the authors in other chapters. The population of

reinforcing particles is assumed to have identical size, shape and alignment and, in addition, is

assumed to be uniformly distributed such that each particle and its surrounding matrix deforms in

the same way as every other particle/matrix neighborhood. In this way, a single particle/matrix cell

with special periodic boundary conditions can be used to compute the response of the entire

composite. Usually, to reduce the computations, a cell with full 3D geometry will be replaced, as

an approximation, by an axisymmetric cell under axisymmetric boundary conditions. This final

step in the modeling process, which is illustrated in the insert in Figure n-l for a 3D array of

spherical particles, has been shown to introduce little error at moderate volume fractions (Horn,

1992). The volume fraction of the reinforcing phase in the cell is identified with the volume

fraction of that phase in the composite. The height to diameter of the cell can be chosen to model
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the axial to transverse spacing of the particulates in the composite. Some further discussion of the

role of the cell aspect ratio can be found in Bao et al. 1991 a; in this chapter all results for aligned

reinforcements will have been calculated using a ceU whose height to diameter ratio equals that of

the reinforcing particles.

The results of the cell model computation for the strengthening ratio, 30/0, as a function

of particle volume fraction f for spherical particle reinforcements in an elastic-perfectly plastic

matrix is shown in Figure n- 1. The limit yield stress of the composite becomes unbounded as the

volume fr.ction approaches the value where the particles make contact, which for the cell model is

f=2/3. The most notable feature of these predictions is how little strengthening effect spherical

particles have. A ten percent increase in limit yield stress requires almost a twenty percent volume

fraction of particles. This, of course, is in marked contrast with the relatively large strengthening

possible from volume fractions of less than even one percent of equi-axed precipitates whose sizes

are sufficiently small that discrete particle/dislocation interactions govern strengthening. Larger

equi-axed particles, in the range in which continuum plasticity governs, are remarkably inefficient

strengthening agents.

Elongated or disc-shaped particles can be effective strengthening agents, as seep ;n Figures

n-2 and n-3. The effect of aligned ellipsoidal particles on the strengthening ratio is displayed in

Figure n-2, where the prolate axisymmetric particles have aspect ratio a/b<l and the oblate particles

have a/b> 1. The effect of either pronounced elongation or flattening of the particles is striking in

comparison with the effect of the spherical particles, which is labeled in this figure by a/b=l.

Particles in the shape of right circular cylinders (rods a/b<l, unit cylinders a/b=l, or discs a/b> 1)

are somewhat more effective than ellipsoids at the same volume fraction (Figure n-3). The unit

cylinders are still not very efficient, but they are about twice as effective as spheres (Christman, et

al. 1989). Thus, details of particle shape in addition to aspect ratio can be important. Arrangement

of the reinforcing phase can also be important especially when the particles are highly elongated

with significant strengthening capacity. The results for the elongated particles shown in Figures n-
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2 and n-3 represent an arrangement where the particles are end-to-end with no overlap, by virtue of

geometry of the axisymmetric cell model. Alternative arrangements of highly elongated particles

allowing for varying degrees of particle overlap have shown that results such as those discussed

above based on the simplest cell model usually predict the largest possible strengthening (Levy and

Papazian, 1990; Tvergaard, 1990; and Dragone and Nix, 1990).

n. 1.2 Transverse Strengthening of Continuous Fiber-reinforced Composites

A compos;te with aligned continuous fibers which do not deform plastically (nor fracture)

will not have a limit yield stress for stressing parallel to the fiber direction, and nonlinear response

of the composite for such loadings will be dealt with elsewhere in this book. The fibers have a

strengthening effect for stressing in tension or compression in directions perpendicular to the fibers

which is analogous to that described for the discontinuous particulate reinforcements with a well

defined limit yield stress. For this reason, results of Jansson and Leckie, 1992 and unpublished

work of Schmauder and McMeeking for the transverse strengthening of fiber-reinforced

composites will be included in this chapter. As in the case of the discontinuous reinforcements, the

fibers are assumed to be perfectly bonded to the matrix which is elastic-perfectly plastic with tensile

yield stress ro0. The strengthening ratio (;/01 is plotted as a function of the fiber volume fraction

f in Figure n-4 for round fibeis in square and hexagonal arrangements. It should be noted that

results for biaxial stress states can be obtained from Figure n-4 by superposition of a hydrostatic

stress.

At small volume fractions there is very little strengthening except for the imposition by the

fibers of plane strain flow in the matrix. Thus, the limit at zero volume fraction is a strengthening

ratio of 2/,F3, consistent with plane strain. The minimal effect of fibers on the transverse strength

is analogous to the situation with spherical reinforcements discussed previously. The results

plotted in Figure n-4 make it clear that there is a strong effect of fiber arrangement, which has been

observed previously in calculations by Brockenbrough, Suresh and Wienecke, 1991 and others.

When the stress is applied parallel to the diagonal of the square packing, the strengthening is 2/0-
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for all the volume fractions studied by Schmauder and McMeeking which were as high at 75%.

The lack of strengthening beyond the plane strain level occurs in this case because plastic shear

strain can occur without constraint on planes parallel to the diagonal of the packing. This

deformation is sustained by the yield stress in shear parallel to the diagonals and therefore by a

transverse tension of d = 2ao/N3. This particular mechanism of deformation occurs when the

square packed composite is loaded parallel to the diagonal. It is only precluded when the fibers

touch each other which takes place when f = nr/4. Thus, the strengthening ratio of 2/N- should

prevail up to just below this volume fraction of fibers. When f = Jt/4 = 0.79 and the fibers

touch, the square packed composite has an unbounded limit load in analogy to the behavior of the

material reinforced with spheres.

When the material with fibers packed in a square arrangement is loaded parallel to the fiber

rows, there is no strengthening beyond the plane strain level up to a volume fraction of

7t/8 = 0.39 as can be seen in Figure n-4. Below this volume fraction, shear strain can occur on

uninterrupted planes at 45" to the tensile axis. Thus a shear stress, at 45" to the fiber rows, equal

to the shear yield strength, is sufficient to ensure yielding of the square packed material at volume

fractions below 39%. Consequently, the transverse limit strength in these circumstances is

2oto/,. When the volume fraction exceeds 39%, the planes at 45" to the square packed fiber rows

are interrupted by the fibers. As a result, shear strain can no longer occur freely on those planes

and the constraint leads to an elevation of the transverse strength. Figure n-4 shows that this

constraint rises quite rapidly as the volume fraction is increased. Indeed, the strength would

become unbounded at a volume fraction of it/4 = 79% when the fibers are touching. Therefore

the strengthening ratio must rise rapidly between the volume fractions nt/8 = 39% where it is 2/b,3

and Yt/4 = 79% where it is infinity. Comparison of the results in Figure n-4 for the square packed

fiber composite loaded in the two orientations reveals a marked anisotropy at volume fractions

above 39%.
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In contrast, the material with the fibers arranged in a hexagonal array exhibits minimal

anisotropy. This was noted by Brockenbrough et al. (1991) and Jansson and Leckie (1992) who

cite unpublished work by Jansson. A single line has been used in Figure n-4 to represent all

results for the hexagonal packed composites, though with a perfectly plastic matrix there is a small

difference in the transverse strength if the stress is applied parallel to the fiber rows or at 30' to the

fiber rows. At a given volume fraction, other results lie in between. It can be seen in Figure n-4

that there is little strengthening when the volume fraction of fibers is low. In this regard, the

hexagonally packed fibers in terms of transverse strength are similar to spherical particulates in

their ineffectiveness as strengthening agents. It requires 50% fibers to increase the transverse

strength to 30% above the matrix uniaxial strength and about half of that effect comes from plane

strain. In contrast to the square packed case, there is a small effect at low volume fractions of

hexagonally packed fibers. This arises because there are no uninterrupted shear planes in the case

of hexagonally packed fibers so that even a small number of fibers causes some constraint,

although the net effect is quite modest. The strengthening ratio rises more strongly above volume

fractions of 70%. Presumably, the more rapid rise occurs because the volume fraction is

approaching the level of n/2 01 = 91% at which the hexagonally packed fibers touch and the

strength becomes unbounded.

n. 1.3 Randomly Oriented Versus Aligned Discontinuous Reinforcements

Very few results are available to illustrate strengthening effects for other than aligned

reinforcements. The computational cell models are not readily extended to other than aligned

arrangements. One exception is the set of results obtained by Bao, et al. 1991a for randomly

oriented elongated ellipsoidal and disc-shaped oblate ellipsoidal particles embedded in an elastic-

perfectly plastic matrix. The composite was assumed to have a packet morphology with grain-like

regions containing a number of aligned particles. The grain-like packets are randomly oriented

such that the overall behavior of the composite is isotropic. The analysis of Bao, et al. involved

two steps: a 3D cell model analysis was performed to obtain the multi-axial limit yield surface of
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the grain-like packet; and then this result was used in conjunction with a Bishop-Hill procedure,

averaging over all orientations of the "grains" relative to the tensile stressing axis, to obtain an

upper bound to the limit yield stress o0 of the composite. The strengthening ratios for such

randomly oriented prolate ellipsoids (a/b--0.1) and oblate ellipsoids (a/b=10) are shown in Figure

n-5. Included in this figure are the results from Figure n-2 for the same paricles when they are

aligned and stressed parallel to their direction of alignment. The particles are obviously not nearly

as effective when they are randomly oriented as when they are aligned. Of course, the

strengthening effect for the randomly oriented reinforcement holds for any orientation of the tensile

axis, whereas the strengthening for the composite with aligned particles applies only for stressing

parallel to the alignment. Its transverse yield strength is lower than the yield strength of the

composite with the randomly oriented particles.

Relatively high aspect ratio disc-shaped particles packed to volume fractions of about

twenty percent or more must assume a packet-like morphology if they are randomly oriented, but

needle-shaped particles (e.g. chopped fibers) need not assume the packet morphology. A more

common morphology involves little orientation correlation between neighboring particles. It is an

open question as to whether morphologies giving isotropic behavior other than the packet

morphology would give more significant strengthening than that observed in Figure n-5.

n. 1.4 Spatial Distribution of the Reinforcement: Nonuniform Versus Uniform

The particle/matrix computational cells model a particle distribution which is necessarily

uniform, both in space and with respect to the size and shape of the particles. Even when the cell

is embellished to reflect details such as local arrangement of particles, the overall spatial

distribution is uniform. Some methods for estimating the overall elastic moduli of composite

materials do lend themselves to the study of the effect of nonuniformity (Toquanto 1991).

Nevertheless, there is surprisingly little guidance available from the literature for material designers

to go by in the form of simple "rules of thumb "on the role of nonuniformity, even for elastic

properties. A recent study of the effect of a special form of nonuniform spatial distribution of
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reinforcement on limit flow strength (Bao, Hutchinson and McMeeking 1991b) does lead to the

clear-cut conclusion that nonuniformity increases the strength of the composite relative to its

uniform counterpart, at least for the class of nonuniformities envisioned. The procedures leading

to this result will now be described for the case of reinforcement of an elastic-perfectly plastic

matrix with isotropic distributions of rigid spherical particles.

Self-consistent calculations were carried out for the overall limit flow stress ao for a

two-phase elastic-plastic composite where each phase is isotropic and elastic-perfectly plastic with

flow stress (Y0() and volume fraction f(0), i=1,2. Each of the two phases is assumed to be

isotropically distributed so that the overall behavior of the composite is isotropic. The self-

consistent calculations of ao of Bao, et al, 1991b, which will not be reported here, employed a

three-shell model with an inner sphere representing the 'particulate' phase #1 (with ao(1) and f(1) ),

an intermediate shell representing the 'matrix' phase #2 (with 00(2)and f(2) ), and an outer region

extending to infinity endowed with the unknown properties of the composite. For ratios of

co(O)/ao( 2 ) differing from unity by less than a factor of two, the uniform strain rate upper bound

(i.e. the rule of mixtures) to the overall limit tensile stress

U0 = f'at)Y + f 2)a (2) (n.1)

gives an excellent approximation.

The nonuniformity in the distribution of the spherical particles is also depicted in Figure n-

6a. The average volume fraction of the spherical particles taken over the whole composite is c. It

is assumed that there are particle-rich sub-regions and particle-poor sub-regions. Moreover, it is

assumed that the spacing between the particles in each of these regions is small compared to the

size of the sub-regions. Thus within each of the respective sub-regions the results of Figure n- I

for a uniform distribution of spherical particles (sketched also in Figure n-6a and denoted by I.(c) )

can be used to specify the flow stress. Specifically, let Cl be the volume fraction of the particles in

the isolated sub-regions comprising volume fraction f(l) of the composite and whose flow stress

00(1) is read off the curve for the uniformly distributed particles at the value cl. The volume
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fraction of the particles in the contiguous sub-regions is c2 with associated values f( 2) and o0(2),

which is also read off the same curve. The relation between the local particle volume fractions, the

average particle volume fraction, and the volume fractions of the

two sub-regions ( f(1) and f(2)=1-f(1 ) ) is

S= f c1) + f( 2)c 2  (n.2)

In this way, the self-consistent results for the two-phase composite can be used to estimate the

effect of the non-uniformity.

An example of the outcome of the calculation just described is shown in Figure n-6b for

three levels of average particle volume fraction c. In this example the volume fraction of the

isolated ('particulate phase') and contiguous regions ( 'matrix phase') are taken to be the same

(i.e., f(1)=f(2)--/2 ). The measure of the nonuniformity is taken as cl- c, so that cl=c2= c gives

the uniform distribution. Each curve in Figure n-6b corresponds to a fixed value of c, and thus

one notes that the uniform distribution gives the minimum estimate of Go. Any nonuniformity,

whether corresponding to particle-rich contiguous sub-regions or particle-rich isolated sub-regions,

leads to an increase in limit flow stress relative to the uniform distribution. An analytical

.7ession for the limit flow stress, valid for sufficiently small nonuniformities, brings out this

eature very clearly, i.e.

-0=Ec C (2 (n. 3)
1 =L,-: , )c --

Thus, as long as the curvature of the relation of flow stress to particle volume fraction is positive

for the uniformly distributed case, any nonuniformity of the class discussed here will enhance the

flow strength. This conclusion seems to be borne out by the numerical results for the transverse

stress-strain behavior of continuous fiber reinforced metal matrix composites discussed by Suresh

and Brockenbrough in Chapter 10. These authors have compared transverse behavior for various

nonuniform distributions of circular fibers ('random arrays') with the corresponding behavior for

uniform triangular arrays, which give rise to nominally isotropic transverse behavior. The
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transverse stress-strain curves of the composites with the nonuniform distributions of fibers lie

well above that for the triangular array at the same volume fraction of reinfo;cement.

n.2 ALIGNED REINFORCEMENT OF ELASTIC-STRAIN HARDENING MATRICES

Now consider isotropic matrix materials whose tensile stress-strain curve is specified by

the Ramberg-Osgood relation

E =+ct (n.4)

where E is the Young's modulus, ao is now a reference yield stress, and n is the stress hardening

exponent. Let o and E be the overall tensile stress and strain of the composite in the direction of

the aligned reinforcement. An approximation to the tensile stress-strain curve of the composite

developed by Bao, et al. 1991a is

E +OLEO (n.5)

where £.0=o0/E is the reference yield strain of the matrix and GN is the reference stress of the

composite elaborated on below.

The elastic modulus of the composite in the direction of alignment E can be computed

using a cell model or it can be estimated in a number of ways. The prediction of elastic properties

of composites as dependent on the constituent properties is a well developed subject, and thus the

estimation of E will not be dwelt on in this chapter.

To understand the origin of the second term in (n.5), consider a pure power matrix material

reinforced by rigid particles (or, in the case of the transverse behavior of a continuous fiber

composite, a pure power law matrix surrounding by rigid fibers). The incompressible matrix has

the following tensile and multi-axial behavior
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a an (n.6)
"CO ( FO) CO 2 I Oo) Go

As discussed in detail by Bao, et al. 1991 a, the composite with perfectly bonded rigid particles also

has pure power law behavior. The uniaxial stress-strain relation for the composite for stressing in

the direction of particle alignment is

S= 
a )n (n. 7)

The composite reference stress ON depends on n as well as on the same parameters influencing

o0 for the perfectly plastic solid, i.e. f, particle shape, etc. In the limit for n-3--), 0 N--ý 00.

The dependence of the reference stress on n must be computed. A large number of such

computations re, 9rted in Bao, et al. 1991a indicate that the dependence on N--/n is accurately

approximated by

aN =_ 0 + cN(U0 -a 0 ) (n.8)

The coefficient c has a weak dependence on f and particle shape (see Figure n-7) but is in the range

from 2 to 2.5 for most systems of interest. Stain hardening of the matrix enhances the flow

strength of the composite as reflected by (n.7) in two ways: through the stress exponent n and

through the increase of the reference stress above o0.

Now conw'ier again the composite with a elastically deforming reinforcement phase well

bonded in the Ramberg-Osgood matrix (n.4). Neither the elastic properties of the reinforcement

nor the elasticity of the matrix influence the asymptotic "large strain" behavior of the composite for

overall strains which become large compared to co. Thus, the asymptotic behavior of the

composite is given precisely by the pure-power relation (n.7). The approximate Ramberg-Osgood

relation (n.5) for the elastic-plastic behavior of the composite was proposed as a formula to

interpolate between the elastic limit and the asymptotic limit for "large strains". The formula

reasonably accurately captures the response of the composite. This can b -en in Figure n-8
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where results for an example for a composite with aligned disc-shaped cylindrical reinforcements

(f=0.2 and a/b=5) are displayed for three levels of hardening. The matrix curves (n.4) are shown

for reference, the dashed curves represent the approximation (n.5) with the relevant values of E

and ON, and the solid line curves are the results of numerical calculations using a cell model with

the complete Ramberg-Osgood relation (n.4) for the matrix. Other examples are shown by Bao, et

al. 199 Ia. The example in Figure n-8 illustrates the point that the flow stress enhancement derives

from both the exponentation and the dependence of the reference stress ON on n. It should also be

noted that the approximate formula (n.5) tends to overestimate the stress in the knee of the

composite stress-strain curve. This may be of some consequence since for many metal matrix

composites the strain range of interest may not significantly exceed the region of the knee. More

accurate predictions will require more detailed computations such as those shown as solid line

curves in Figure n-8 and as reported elsewhere in this volume.

A series of squeeze cast composites with a matrix of aluminum/magnesium and reinforced

by silicon carbide particles were prepared and tested to obtain uniaxial stress-strain data by Yang,

et al, 1990. This study was notable for the range of volume fractions, particle sizes and shapes

considered, and for the careful attempt to establish the insitu matrix stress-strain behavior. Particle

sizes ranged from several microns to more than a hundred microns. Over this size range it was

established that there was very little dependence on particle size once the volume fraction and

particle shape were fixed. Two sets of stress-strain data are shown in Figures n-9 where

comparison with the Ramberg-Osgood estimation procedure just described is made. These Figures

were taken from Yang, et al, 1991, where a fuller discussion of the composites and their

preparation can be found. Figure n-9a shows tensile stress-strain data for the matrix and for

composites reinforced by three volume fractions of equi-axed particles whose average size was 9

microns. The estimation scheme described above was applied by fitting the Ramberg-Osgood

curve (n.4) to the matrix curve to obtain n and c0 ((x was taken to be 3/7). The value of E in

(n.5) was taken from the experimental curve (which in turn was shown to agree well with self-

consistent predictions) and ON was determined from (n.8) using the results for 00 from Figure
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n-3 for the unit cylindrical particles. The dashed-line curves in Figure n-9a are the result of the

estimation procedure. The same procedure was applied to the uniaxial compression data in Figure

n-9b for composites reinforced by randomly oriented platelets whose average maximum diameter

was 25 microns. In this case, the platelets are taken to have a 10 to 1 aspect ratio and the results

for a0 for the randomly oriented ellipsoidal platelets in Figure n-5 were employed to es ;ate

ON.

n.3 THE INFLUENCE OF RESIDUAL STRESS ON COMPOSITE YIELDING

The results presented so far in this chapter are for materials initially free of residual stress in

the matrix and the reinforcements. Most il matrix composites are processed at high temperature

and upon cooling develop residual stresses due to thermal expansion mismatch between the matrix

and the reinforcements. While the residual stresses have no effect on the purely elastic response of

the composite, it is of interest to determine the effect on the yielding of reinforced materials. Such

effects can occur because the residual stress can have a deviatoric component and therefore can

influence the process of yielding in the matrix. The effect has been considered by several

investigators including Povirk, Needleman and Nutt, 1990. However, Zahl and McMeeking,

1991, have provided a series of results for strongly bonded elastic reinforcements in perfectly

plastic matrices showing the influence of the thermal strain mismatch relative to the volume fraction

of reinforcements and the yield strain of the matrix.

The results of Zahl and McMeeking, 1991, were obtained by the unit cell method with

finite elements used for the analysis. The residual stresses were first generated by cooling the

material down while the matrix was permitted to respond elastoplastically. Thereafter the loads

were applied to cause macroscopic deformation. The magnitude of the residual stresses generated

were controlled by the parameter Aat AT/Eo where Act is thermal expansion coefficient of the

reinforcement minus the thermal expansion coefficient of the matrix and AT is the current

temperature minus the temperature at which the composite material is free of residual stress in both

the matrix and the reinforcement. The parameter P- is, as before, the yield strain in tension of the
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matrix material. The calculations were carried out with an elastic modulus for the reinforcement

which is 6.62 times the elastic modulus of the matrix.

Figure n-10 shows the stress-strain curves for spherical reinforcements in a perfectly

plastic matrix with Aa AT/Eo = 1. This case corresponds to SiC particles in an Al alloy matrix

256C below the stress free temperature. A softening of the composite response results at strains

comparable to the matrix yield strain for both tension and compression with the effect much more

pronounced in the compressive cases. The compressive stress-strain curve is up to 30% below the

tensile one in terms of strength at the same strain magnitude. However, as the strain increases

beyond £o = Act AT, the compressive and the tensile stress-strain curves converge towards the

curve for the material without initial residual stress. The limit strength is thus the same whether

there are initial residual stresses or not. Since the compressive stress-strain curve also represents

tension applied to a material with Aa AT/to = -I (i.e. the sign of the residual stresses reversed),

the limit strength is unaffected by whether the residual stresses in the matrix are tensile or

compressive. Since the limit strength of reinforced materials is independent of the initial residual

stresses, the behavior of the composite material when the strain greatly exceeds c -- Act AT is

correspondingly independent of them too. However, the limited ductility of particulate composites

means that such large strains are rarely achieved in tension and are unusual in compression unless

accompanied by internal damage. As a consequence tension-compression asymmetries in the

yielding of particulate composites are to be expected and will generally persist until fracture of the

material occurs.

The degree of yielding caused by thermal expansion mismatch between the matrix and the

reinforcements depends on the magnitude of Aca AT/ro. When this parameter equals I as in the

case discussed above, about 50% of the matrix around spherical particles is yielded. When

Act AT/to = 2, 60% of the matrix has yielded whereas when Aot AT/eo = 5, the entire matrix

has deformed plastically upon cooling. The effect of these different degrees of yielding on a

material with 20% of elastic spheres on the compression and tension stress-strain curves is shown
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in Figures n-I 1 and n-12. It can be seen that in both tension and compression the greater thermal

expansion misfit causes a softer response. Since the matrix is fully yielded when Aa AT/e = 5,

any larger magnitude of Acx AT/co than 5 will give rise to the same tension and compression

stress-strain curves as occur for Aa AT/co = 5. It is of interest that the characteristic strain

during which the thermally induced transient occurs is F0 rather than Act AT. At a macroscopic

strain of 2&0, the transient effect in each case has largely disappeared.

Zahl and McMeeking, 1991, have also given results for 20% by volume of aligned well

bonded elastic short fibers in a perfectly plastic matrix. The aspect ratio of the fibers is 10 and they

are circular cylinders. The stress-strain curves are shown in Figure n-13 for compression and n-14

for tension. As be" .?re, the thermal residual stresses cause a transient softening of the response

which is more marked in compression than in tension. However, in both cases the effect is not

great and in the tensile case is almost negligible. In compression, the maximum softening is only

about 15%. In addition, the matrix is almost fully yielded by thermal stresses when

Aa AT/es = 1 and only a region beyond the fiber ends is still elastic. Increasing values of

Aci AT/&o do not change this situation very much. It is likely that this effect is caused by the fact

that in the calculations the fibers are modeled as being fairly close together side by side but far apart

end to end. When there are no initial residual strains, the limit strength is reached in this case at a

strain of about 5Eo. When there are initial thermal stresses, the Utansient they cause is noticeable up

to this strain. Thus is can be concluded that in general the transient persists up to the strain at

which the limiting behavior sets in when there are no thermal residual strains.

n.4 REINFORCEMENT AGAINST CREEP

n.4.1 Steady-state Power Law Creep

A simple correspondence between behavior for pure power law plasticity and steady-state

power law creep permits the results of the form (n.7) to be translated immediately to give insight

into reinforcement against creep. It is again assumed that the particle/matrix bond is perfect and in
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addition that the sole mechanism of inelastic deformation is power law creep. The consequences of

interface sliding and diffusional relaxation of the reinforcement are taken up in the next sub-

section. In power law creep the tensile and multiaxial stress-strain rate relations are the exact

counterparts to (n.6), i.e.

ad -4'=a -__)n (n.9)C o tE0 2 2 0

where now c-O is a reference strain rate and oC is an adjustable constant which may be taken to be

unity. The steady-state creep behavior of the composite also has a pure power law form, and the

tensile behavior in the direction of the aligned particles converts from (n.7) to

where ON is precisely the same composite reference as for the rate-independent matrix. The

strengthening in creep is reflected by the ratio ON/O0, which in turn is given by (n.8) together

with the plots of Go0/o for various forms of reinforcement presented earlier.

n.4.2 Diffusional Relaxation of the Reinforcement

At high temperature, in addition to matrix power law creep, mass transport by diffusion can

occur within grains, on grain boundaries and on interfaces. Matter diffuses from regions of low

stress to regions of high stress and the result is a macroscopic deformation which is proportional to

the applied stress, usually in a linear manner (Frost and Ashby, 1982). This is known as

Nabarro-Herring or Coble creep depending on the diffusion path. Macroscopically, it can be

modeled as a continuum linear viscosity of the matrix or, in the cases where it is nonlinear, as a

continuum power law creep with a low creep index. However, the presence of the interface

between the reinforcement and the matrix in a composite material provides an additional path for

mass transport which is not accounted for by matrix properties alone or reinforcement properties

alone. Furthermore, the interface is typically a rapid path for mass transport and therefore
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diffusion on the interface can lead to a relatively fast creep of the composite material. As a

consequence, it is desirable to model this mode of creep and Rosier, Bao and Evans, 1991, have

used this mechanism to explain trends in the creep strength of composite materials. There is reason

to believe that when the temperature is sufficiently high an otherwise strongly bonded interface will

be capable of sliding. Therefore, the sequence that is envisioned is that as the temperature is

increased, the resistance to sliding on the interface diminishes and eventually disappears. As the

temperature continues to increase, diffusion is activated in the interface and occurs in an

environment of zero resistance to sliding.

Little comprehensive modeling has been done on this problem. However, Sofronis and

McMeeking, 1992, have provided theoretical results for the creep strength of a material containing

20% by volume of rigid spheres of radius R. The results were obtained using the cell model

method as described previously in this chapter but with interfaces which are capable of sliding or

are capable of sliding and simultaneously subject to mass transport within the interface. In the

results of Sofronis and McMeeking, 1992, the resistance to sliding in the form of a shear strength

tss was considered to be proportional to the relative velocity vs of sliding across the interface and

thus

'Is = :lvs (n.l 1)

where gi is an effective interface viscosity. As the temperature goes up, g will diminish and

eventually disappear. Mass transport is controlled by an effective diffusion parameter D such that

Vn = - D V2 Cyn (n.12)

where vn is the relative velocity normal to the interface of the matrix relative to the reinforcement,

V is the gradient operator in the surface of the interface and C3n is the normal component of the

stress across the interface.
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A summary of the results of Sofronis and McMeeking, 1992, is shown in Figure n-15.

The creep strength &/a is plotted against the inverse interface sliding viscosity and against the

effective interface diffusion coefficient. The creep strength is the stress required to cause a given

strain rate in the composite divided by the stress to cause the same strain rate in the matrix alone.

In the left half of the figure D= 0 so that no diffusion takes place on the interface and in the right

half of the figure ýi = 0 so that shear free sliding occurs at the interface. In terms of the whole

plot, the temperaturt is relatively low (but in the creep range) at the far left of the diagram and

increases from left to right all the way across. However, the scale would almost certainly not be

linear or continuous in terms of temperature from left to right as drawn in Figure n- 15. It can be

seen that the creep strength falls as the resistance to sliding diminishes and mass transport

increases. When the matrix is linear (n = 1), the creep strength is independent of strain rate.

However, the power law creeping matrix leads to an effect, in conjunction with interface sliding or

mass transport, which is sensitive to strain rate. A slower strain rate leads to a lower creep

strergth indicating that the slow straining permits the sliding behavior or the diffusion process to

become active relative to matrix creep whereas a fast strain rate seems to preclude these interface

processes to some extent.

Sliding with no mass transport (the left half of Figure n-15) leads to a reduction of the

creep strength of the composite material. The creep strength in each case reaches an asymptote as

the sliding resistance diminishes and these asymptotic values represent the creep strergth when

there is no shear strength at the interface. In the linear case, the strength falls from over twice the

matrix strength for a well bonded non-sliding interface down to only 30% above the matrix

strength when the interface slides freely.

When mass transport by diffusion becomes active, the creep strength is diminished further.

As before, an asymptotic value of the creep strength is approached as the diffusion becomes very

fast. In eacl, case, the asymptotic creep strength is below that of the matrix strength indicating that



20

due to the presence of the interface, the reinforcements actually weaken the composite material if

the diffusion rate is high enough.

Another important feature of the results is a particle size effect. The material parameters p±

and D inherently contain length scales. As a result, the continuum analysis predicts a behavior

which, in turn, depends on the particle size. For a given interface and volume fraction of

reinforcements, a larger particle size improves the creep strength. In the case of sliding, the effect

can be understood in terms of the reduction in the total area of particle surface as the size is

increased thereby diminishing the effective strain produced by the same velocity of sliding. In the

case of mass transport, the larger particle imposes greater diffusion distances, hence reducing the

macroscopic strain rate. This effect in relation to grain size is well known in diffusion controlled

creep of homogeneous materials (Frost and Ashby, 1982).
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F~igure Capti~ons

Figure n-I Strengthening ratio for an elastic-perfectly plastic matrix reinforced by rigid

spherical particles. The insert illustrates the steps leading to a axisymmetric

cylindrical cell for a uniform distribution of particles.

Figure n-2 Strengthening ratio for an elastic-perfectly plastic matrix reinforced by aligned

ellipsoidal particles (from Bao, et al, 199 1a).

Figure n-3 Strengthening ratio for an elastic-perfectly plastic matrix reinforced by aligned

cylindrical particles (from Bao, et al, 1991 a).

Figure n-4 Strengthening ratio for the transverse loading of a perfectly plastic material

reinforced by long rigid fibers.
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Figure n-5 Strengthening ratio for an elastic-perfectly plastic matrix reinforced by randomly

oriented ellipsoidal needles (a/b=l/lO) and randomly oriented ellipsoidal platelets

(alb=10) where the particles possess a packet-like morphology. The strengthening

ratios for the corresponding aligned reinforcements from Figure n-2 are included

for reference (from Bao, et al, 199 1a).

Figure n-6 a) Scheme for applying the results for a dual-phase composite to a matrix reinforced

by equi-sized rigid particles which are nonuniformly distributed. b) Strengthening

ratio as a function of nonuniformity for three levels of average particle volume

fraction c. In this example the volume fraction of each of the nonuniform 'phases'

is taken to be 1/2, and the tensile yield stress of the elastic-perfectly plastic matrix is

taken to be oy.

Figure n-7 Computed dependence of the reference stress ON on the hardening index N=l/n

for a variety of particle shapes and volume fractions.

Figure n-8 Tensile stress-strain curves for composites reinforced by aligned disc-shaped

cylindrical particles (a/b=5 and f=0.2).The matrix material has the Ramberg-

Osgood stress-strain curves shown. The solid line curves for the composite were

computed using a cell model while the dashed line curves were obtained using the

estimation scheme described in the text.

Figure n-9 Comparison of experimental data for composites of an AI/Mg matrix material

reinforced by SiC particles with stress-strain curves predicted by the estimation

scheme described in the text (from Yang, et al 1991). a) uniaxial tensile curves for

matricies reinforced by equi-axed particles, b) uniaxial compression curves for

matrices reinforced by randomly oriented platelets.
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Figure n-10 Stress-strain curves for 10, 20, 40 and 50 volume % of spherical reinforcements in

a perfectly plastic matrix with Aa AT/o = 1.

Figure n-1 I Compressive stress-strain curves for 20 volume % of spherical particles with

different amounts of thermal expansion misfit with the perfectly plastic matrix.

Figure n-12 Tensile stress-strain curves for 20 volume % of spherical particles with different

amounts of thermal expansion misfit with the perfectly plastic matrix.

Figure n-13 Compressive stress-strain curves for 20 volume % cylindrical fibers with a 10 to I

aspect ratio with different amounts of thermal expansion misfit with a perfectly

plastic matrix.

Figure n-14 Tensile stress-strain curves for 20 volume % cylindrical fibers with a 10 to I aspect

ratio with different amounts of thermnal expansion misfit with a perfectly plastic

matrix.

Figure n-15 Creep strength of a material containing 20% by volume of rigid spheres when

sliding occurs on the interface and when shear free sliding and mass transport occur

on the interface. The radius of the spherical reinforcements is R.
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